Offene Teilmenge/C/C-wertige 1-Form/Reell-Differenzierbar/Beispiel

Es sei eine offene Teilmenge und

eine reell-partiell differenzierbare Abbildung, die wir in der Form mit reellwertigen Funktionen

schreiben. Die Abbildung

ist dann eine -Form mit Werten in . Wenn man mit die reellwertige Differentialform bezeichnet, die jeden Punkt auf die lineare Projektion , , abbildet, und mit die reellwertige Differentialform bezeichnet, die jeden Punkt auf die lineare Projektion , , abbildet, und diese Formen wiederum in auffasst, so kann man

schreiben. Dies bestätigt man, indem man beide Seiten auf die Standardvektoren und anwendet.