Ordnungsrelation/Einführung/Textabschnitt

Eine reflexive, transitive und antisymmetrische Relation nennt man eine Ordnung, wofür man häufig ein Symbol wie verwendet.


Definition  

Eine Relation auf einer Menge heißt Ordnungsrelation oder Ordnung, wenn folgende drei Bedingungen erfüllt sind.

  1. Es ist für alle .
  2. Aus und folgt stets .
  3. Aus und folgt .

Eine Menge mit einer fixierten Ordnung darauf heißt geordnete Menge. Wenn zusätzlich gilt, dass für je zwei Elemente oder gilt, so spricht man von einer total geordneten Menge.


Beispiel  

Die reellen Zahlen (ebenso die rationalen Zahlen und die ganzen Zahlen) sind total geordnet durch die Größergleichrelation . Dies gehört zum Begriff des angeordneten Körpers, der nicht nur verlangt, dass eine totale Ordnung erklärt ist, sondern auch, dass diese mit den algebraischen Operationen verträglich ist. Die strikte Größerrelation ist keine Ordnungsrelation, da sie nicht reflexiv ist. Der Körper der komplexen Zahlen ist nicht angeordnet (und lässt sich auch nicht anordnen).



Beispiel  

Wir betrachten die positiven ganzen Zahlen zusammen mit der Teilbarkeitsbeziehung. Man sagt, dass eine Zahl die Zahl teilt, geschrieben

wenn es eine weitere natürliche Zahl mit

gibt. Die Bezeichnung ist nicht sonderlich glücklich gewählt, da ein symmetrisches Symbol für eine nichtsymmetrische Relation verwendet wird. Die Teilbarkeitsrelation ist in der Tat reflexiv, da stets ist, wie zeigt. Die Transitivität sieht man so: sei und mit und . Dann ist und daher . Die Antisymmetrie folgt so: Aus und folgt . Da wir uns auf positive natürliche Zahlen beschränken, folgt und daraus . Also ist Einfache Beispiele wie und zeigen, dass hier keine totale Ordnung vorliegt, da weder von noch umgekehrt geteilt wird.



Beispiel  

Es sei eine beliebige Menge und die Potenzmenge davon. Dann sind die Elemente aus - also die Teilmengen von - durch die Inklusionsbeziehung geordnet. Die Reflexivität bedeutet einfach, dass eine jede Menge in sich selbst enthalten ist und die Transitivität bedeutet, dass aus und die Inklusion folgt. Die Antisymmetrie ist dabei ein wichtiges Beweisprinzip für die Gleichheit von Mengen: Zwei Mengen sind genau dann gleich, wenn und umgekehrt gilt.