Polynomring/Körper/Polynomfunktion/Einführung/Textabschnitt
Der Polynomring über einem Körper besteht aus allen Polynomen
mit , , und mit komponentenweiser Addition und einer Multiplikation, die durch distributive Fortsetzung der Regel
definiert ist.
Ein Polynom
ist formal gesehen nichts anderes als das Tupel , die die Koeffizienten des Polynoms heißen. Zwei Polynome sind genau dann gleich, wenn sie in allen ihren Koeffizienten übereinstimmen. Dabei nennt man die Variable des Polynomrings. Der Körper heißt in diesem Zusammenhang der Grundkörper des Polynomrings. Aufgrund der komponentenweisen Definition der Addition liegt unmittelbar eine kommutative Gruppe vor, mit dem Nullpolynom (bei dem alle Koeffizienten sind) als neutralem Element. Die Polynome mit für alle heißen konstante Polynome, man schreibt sie einfach als .
Die für ein einfaches Tupel zunächst ungewöhnliche Schreibweise deutet in suggestiver Weise an, wie die Multiplikation aussehen soll, das Produkt ist nämlich durch die Addition der Exponenten, also , gegeben. Für beliebige Polynome ergibt sich die Multiplikation aus dieser einfachen Multiplikationsregel durch distributive Fortsetzung gemäß der Vorschrift, „alles mit allem“ zu multiplizieren. Die Multiplikation ist also explizit durch folgende Regel gegeben:[1]
Die Multiplikation ist assoziativ, kommutativ, distributiv und besitzt das konstante Polynom als neutrales Element, siehe Aufgabe. Insgesamt liegt also ein kommutativer Ring vor.
Der Grad eines von verschiedenen Polynoms
mit ist .
Das Nullpolynom bekommt keinen Grad. Der Koeffizient , der zum Grad des Polynoms gehört, heißt Leitkoeffizient des Polynoms. Der Ausdruck heißt Leitterm. Ein Polynom mit Leitkoeffizient heißt normiert.
In ein Polynom kann man ein Element einsetzen, indem man die Variable an jeder Stelle durch ersetzt. Dies führt zu einer Abbildung
die die durch das Polynom definierte Polynomfunktion heißt. Diese Abbildung ist im Allgemeinen nicht linear, Linearität liegt nur bei vor.
- ↑ Wobei wir natürlich, wie auch bei der Addition oder dem Vergleichen von Polynomen verschiedener Grade, die Polynome für bzw. mit den Koeffizienten bzw. ergänzen können.