Beweis

Es sei . Das bedeutet, dass es eine offene Umgebung , , und ein mit gibt. Wir setzen

an und müssen zeigen, dass dies wohldefiniert, also unabhängig vom gewählten Repräsentanten (und ) ist. Sei ein weiterer Repräsentant. Wegen gibt es eine offene Umgebung

mit . Somit ist

und somit ist erst recht