Zum maximalen Ideal auf der Fermat-Quartik werden die symmetrische Asymptotik und die Frobenius-Asymptotik des zweiten Syzygienbündels verglichen. Aus der bekannten Frobenius-Hilbert-Kunz Multiplizität kann man errechnen, dass der -Frobenius Grenzwert rechts gleich ist.
q |
|
|
durch Rang |
|
durch Rang |
|
|
|
durch (Rang) |
|
durch |
|
|
|
1
|
141
|
|
35,25
|
|
35,25
|
|
|
|
|
|
|
|
|
|
2
|
1961
|
|
196,1
|
|
24,5125
|
|
|
|
|
|
|
|
|
|
3
|
11841
|
|
592,05
|
|
21,9277
|
|
2437
|
|
609,25
|
|
22,5648
|
|
|
|
4
|
46610
|
|
1331,7142
|
|
20,8080
|
|
|
|
|
|
|
|
|
|
5
|
141147 (in )
|
|
2520,4821
|
|
20,1638
|
|
10383
|
|
2595,75
|
|
20,766
|
|
|
|
6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
27591
|
|
6897,75
|
|
20,1100
|
|
|
|
8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
104073
|
|
26018,25
|
|
19,5478
|
|
|
|
12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
170515
|
|
42628,75
|
|
19,4031
|
|
|
|
14
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
377749
|
|
94437,25
|
|
19,2219
|
|
|
|
18
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
525709
|
|
131427,25
|
|
19,1612
|
|
|
|
20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|