Projekt:Mathematik ist überall
Dieses Projekt gehört zum Fachbereich Mathematik.
Dieses Projekt soll dazu motivieren, sich mit Mathematik zu beschäftigen. Es ist in Bereiche unterteilt, die wiederum Unterprojekte enthalten. Den Ausgangspunkt bildet die Mengenlehre, weil sie für fächerübergreifende Sichtweisen am geeignetsten ist und einen einfachen Bezug zur Logik besitzt. GliederungBearbeiten
Es wäre erfreulich, wenn weitere Abschnitte hinzukämen. |
|
Was ist Mathematik?BearbeitenKunst. Mathematik ist Kunst, weil sie sich mit abstrakten Objekten beschäftigt. Ein im mathematischen Sinne runder Kreis existiert nicht. Er ist nur ein Objekt unseres Denkens. Damit ist bereits das Wesen der Mathematik gefunden, denn es geht um Objekte unserer Vorstellung. Um diese Vorstellungen mitzuteilen, wurden Begriffe eingeführt, die möglichst genau umschreiben, worum es geht. Dabei hat sich die Mathematik äußerst strengen Regeln unterworfen. So ist eine Formulierung für einen Begriff unhaltbar, wenn auch nur ein einziger Widerspruch auftritt. Wegen dieser Strenge wird hier auch gleich eine Ausnahme gezeigt.
Dieses Zitat von Cantor bildet die Grundlage der modernen Mathematik und führt trotzdem zu Widersprüchen. Mathematik muss sich also auch mit Widersprüchen auseinandersetzen, wie jeder Künstler. Das macht den Reiz der Mathematik aus, denn sie verlangt nach Widersprüchen, um sie zu beseitigen. Wegen dieses Verlangens ist Mathematik wohl die lebendigste aller Wissenschaften. Mathematik ist in allen anderen Wissenschaften gegenwärtig, von der Philosophie über Musik bis zu Medizin, Chemie und Physik. Trotzdem ist Mathematik keine Naturwissenschaft, aber Naturwissenschaft ohne Mathematik ist unmöglich. |
Was verlangt Mathematik?BearbeitenPhantasie. Um Mathematik zu betreiben ist Phantasie erforderlich. Anders ist es unmöglich, das Unendliche oder das Nichts zu denken. Beide Begriffe sind verhältnismäßig neu. Galt die Null "nur" bis ins Mittelalter im Abendland als teuflische Zahl, war das Unendliche bis ins letzte Jahrhundert "verboten". Mit seiner Aussage:
verhalf Dedekind dem Unendlichen im Cantorschen Sinne zum Durchbruch. Endlich waren "horror vacui" (der Schrecken vor der Leere) und "horror infiniti" (der Schrecken vor dem Unendlichen) überwunden. Ist Mathematik begrenzt?Bearbeiten | |||||
Ja. Unendlich und doch begrenzt?! Ein scheinbarer Widerspruch. Eine Wissenschaft, die sich ihrer eigenen Grenzen nicht bewusst ist, hat diese Bezeichnung nicht verdient. Wo aber liegen die Grenzen, wenn sogar Unendlichkeiten noch in Hierarchien eingeteilt werden? Das eigene Denken der Mathematiker erzeugt die Grenzen. Interessant ist, dass die Mathematik selbst diese Grenzen beweist. Kurt Gödel bewies die Begrenztheit der Mathematik mit seinem Unvollständigkeitssatz:
|
Zumindest eine andere Wissenschaft, die Theologie, kann die Grenzen der Mathematik verdeutlichen; wie folgende Anekdote zeigt:
| |||||
Erste HilfeBearbeitenMathematik kann sehr unübersichtlich sein. So ergab eine im Jahre 1994 durchgeführte Zählung über dreitausend spezialisierte Einzeldisziplinen. Dabei ruht das gesamte Fundament nur auf drei Säulen:
Trotzdem, oder gerade deshalb, sind ein paar Orientierungshilfen sinnvoll. | ||||||
ÜbersetzungenBearbeitenDie natürliche Sprache der Mathematik ist mittlerweile das amerikanische Englisch. Es ist also oft erforderlich, in diese Sprache zu übersetzen. Weil früher Deutsch die Sprache der Mathematik war, ergeben sich manchmal recht eigentümliche Begriffe. So ist die Übersetzung von „Verband“ mit „lattice“ auf den ersten Blick recht frei, dafür aber angelsächsisch korrekt. Die Übersetzung des Begriffs „Eigenwert“ ist da schon schwieriger. Korrekt ist tatsächlich: „eigenvalue“. Weil sich wohl niemand mit Schulenglisch traut, so etwas zu schreiben, hier ein entsprechendes Wörterbuch. |
OrganisationenBearbeitenEine kleine Auswahl an mathematischen Organisationen
Außer bei der letzten Vereinigung kann prinzipiell jeder Mitglied werden. Für die "Hamburger" ist die Empfehlung durch ein Mitglied erforderlich. Viele Sitzungen sind aber öffentlich und sehr interessant. | |||||
SchatztruheBearbeitenSchätze warten nur darauf, gehoben zu werden. Sie sind oft alt, worin aber auch ihr größter Wert liegt. Das gilt auch für die Mathematik. Der Traum eines jeden Mathematikers (nach seinem ersten eigenen q.e.d.) ist es, in die Annalen einzugehen. Welche Ansprüche hier gelten, ist am einfachsten durch einen Blick auf die vorhandenen Schätze erkennen: Annalen (von 1869 bis 1996). Wenn schon nicht in den Annalen, so wären da noch die Alternativen
Dedekind mal direkt lesen geht hier. Mitteilungen der Deutschen Mathematischen Gesellschaft in Prag (von 1892) |
Referenzen
Bearbeiten- ↑ Beiträge zur Begründung der transfiniten Mengenlehre, Mathematische Annalen, Bd. 46, S. 31