Let K {\displaystyle {}K} be an algebraically closed field of characteristic zero. Let f {\displaystyle {}f} be an irreducible quadric in d + 1 {\displaystyle {}d+1} variables, d ≥ 2 {\displaystyle {}d\geq 2} .
Then the symmetric powers Sym n ( Syz ( x 1 , … , x d + 1 ) ) ( m ) {\displaystyle {}\operatorname {Sym} ^{n}(\operatorname {Syz} (x_{1},\ldots ,x_{d+1}))(m)} on the quadric
have no nontrivial section for m < 3 2 n {\displaystyle {}m<{\frac {3}{2}}n} .