Die Implikation (1)
(2) ist unmittelbar klar, da ganze Zahlen rational sind und man somit
nehmen kann.
Es sei (2) erfüllt und sei
-

mit
,
und
. Wegen
ist auch
eine rationale Zahl. Wir multiplizieren
mit
und erhalten

Dies ist ein normiertes Polynom, die Koeffizienten sind nach wie vor rational und es ist auch
-

Es sei nun (3) erfüllt, und
-

mit
und
. Es ist
-

mit
,
. Wir setzen

Dieses Polynom hat ganzzahlige Koeffizienten, ist nicht das Nullpolynom und es ist nach wie vor
-
