Es sei eine nichtleere, nach oben beschränkte Teilmenge. Es sei und eine obere Schranke für , d.h. es ist für alle . Wir konstruieren zwei Folgen
und ,
wobei
wachsend, fallend ist und jedes eine obere Schranke von ist
(sodass insbesondere für alle ist),
und so, dass eine Cauchy-Folge ist. Dabei gehen wir induktiv vor, d.h. die beiden Folgen seien bis bereits definiert und erfüllen die gewünschten Eigenschaften. Wir setzen
-
und
-
Dies erfüllt die gewünschten Eigenschaften, und es ist
-
da in beiden Fällen der Abstand zumindest halbiert wird. Da die Folge wachsend und nach oben beschränkt ist, handelt es sich nach
Fakt
um eine Cauchy-Folge. Wegen der
Vollständigkeit
besitzt die konstruierte Folge einen Grenzwert . Ebenso ist die fallende Folge , die nach unten beschränkt ist, eine Cauchy-Folge mit demselben Grenzwert . Wir behaupten, dass dieses das Supremum von ist. Wir zeigen zuerst, dass eine obere Schranke von ist. Es sei dazu angenommen für ein . Da die Folge gegen konvergiert, gibt es insbesondere ein mit
-
im Widerspruch dazu, dass jedes eine obere Schranke von ist.
Für die Supremumseigenschaft müssen wir zeigen, dass kleiner oder gleich jeder oberen Schranke von ist. Es sei dazu eine obere Schranke von und nehmen wir an, dass ist. Da gegen konvergiert, gibt es wieder ein mit
-
im Widerspruch dazu, dass eine obere Schranke ist. Also liegt wirklich das Supremum vor.