Reihe/C/n^nz^n/Bestimme Konvergenzpunkte/Aufgabe/Lösung


Es handelt sich um eine Potenzreihe mit den Koeffizienten . Sie konvergiert für , da dann nur ein Glied von null verschieden ist. Wir behaupten, dass die Reihe für keine weitere komplexe Zahl konvergiert. Da es sich um eine Potenzreihe handelt, genügt es, für jede reelle positive Zahl nachzuweisen, dass die Reihe divergiert. Zu gibt es ein mit . Es gilt dann auch für alle . Wegen

erfüllt die Reihe nicht das Cauchy-Kriterium und kann daher nicht konvergieren.