Relationen/Endliche Menge/Reflexiv, symmetrisch/Anzahl/Aufgabe/Lösung
Es sei . Eine Relation ist gegeben durch eine bestimmte Menge von geordneten Paaren , . Daher kann man sich eine Relation auf so vorstellen, dass in einer -Tabelle gewisse Stellen angekreuzt werden und andere nicht.
Bei einer beliebigen Relation gibt es keine weiteren Bedingungen, sodass es Relationen gibt (das war nicht gefragt).
Bei einer reflexiven Relation muss auf der Diagonalen immer ein Kreuz sein, ansonsten hat man keine Bedingung, es gibt also freie Stellen und daher reflexive Relationen.
Bei einer symmetrischen Relation hat man oberhalb der Diagonalen (einschließlich dieser) volle Freiheiten (unterhalb der Diagonalen muss sich der Eintrag wiederholen). Da gibt es Plätze und somit gibt es symmetrische Relationen.
Bei einer symmetrischen und reflexiven Relation hat man echt oberhalb der Diagonalen volle Wahlfreiheiten. Davon gibt es Plätze, sodass es symmetrische und reflexive Relationen gibt.