Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Restklassenkörper/Z mod 89/Inverses Element zu 25/Aufgabe/Lösung
Sprache
Beobachten
Bearbeiten
<
Restklassenkörper/Z mod 89/Inverses Element zu 25/Aufgabe
Der euklidische Algorithmus liefert
89
=
3
⋅
25
+
14
,
{\displaystyle {}89=3\cdot 25+14\,,}
25
=
1
⋅
14
+
11
,
{\displaystyle {}25=1\cdot 14+11\,,}
14
=
1
⋅
11
+
3
,
{\displaystyle {}14=1\cdot 11+3\,,}
11
=
3
⋅
3
+
2
,
{\displaystyle {}11=3\cdot 3+2\,,}
3
=
1
⋅
2
+
1
.
{\displaystyle {}3=1\cdot 2+1\,.}
Somit ist
1
=
3
−
1
⋅
2
=
3
−
1
⋅
(
11
−
3
⋅
3
)
=
4
⋅
3
−
1
⋅
11
=
4
⋅
(
14
−
1
⋅
11
)
−
1
⋅
11
=
4
⋅
14
−
5
⋅
11
=
4
⋅
14
−
5
⋅
(
25
−
1
⋅
14
)
=
9
⋅
14
−
5
⋅
25
=
9
⋅
(
89
−
3
⋅
25
)
−
5
⋅
25
=
9
⋅
89
−
32
⋅
25.
{\displaystyle {}{\begin{aligned}1&=3-1\cdot 2\\&=3-1\cdot (11-3\cdot 3)\\&=4\cdot 3-1\cdot 11\\&=4\cdot (14-1\cdot 11)-1\cdot 11\\&=4\cdot 14-5\cdot 11\\&=4\cdot 14-5\cdot (25-1\cdot 14)\\&=9\cdot 14-5\cdot 25\\&=9\cdot (89-3\cdot 25)-5\cdot 25\\&=9\cdot 89-32\cdot 25.\end{aligned}}}
Daher ist
−
32
=
57
{\displaystyle {}-32=57\,}
das inverse Element zu
25
{\displaystyle {}25}
in
Z
/
(
89
)
{\displaystyle {}\mathbb {Z} /(89)}
.
Zur gelösten Aufgabe