Restklassenkörper (Z)/Alle primitive Elemente/13/Aufgabe/Lösung


Die multiplikative Ordnung ist ein Teiler von . Wir bestimmen zuerst die Ordnung von . Es ist

Daher muss die Ordnung sein und ist eine primitive Einheit. Daher gibt es einen

Gruppenisomorphismus

der Erzeuger auf Erzeuger abbildet. Die Erzeuger links sind (die zu teilerfremden Zahlen), und diese werden auf die primitiven Einheiten

abgebildet.