Restklassenringe (Z)/Chinesischer Restsatz/Fakt mit Beweisklappe
Es sei eine positive natürliche Zahl mit kanonischer Primfaktorzerlegung
(die seien also verschieden und ).
Dann induzieren die kanonischen Ringhomomorphismen einen Ringisomorphismus
Zu gegebenen ganzen Zahlen gibt es also genau eine natürliche Zahl , die die simultanen Kongruenzen
löst.
Beweis
Da die Ringe links und rechts beide endlich sind und die gleiche Anzahl von Elementen haben, nämlich , genügt es, die Injektivität zu zeigen. Es sei eine natürliche Zahl, die im Produktring (rechts) zu wird, also modulo den Rest hat für alle . Dann ist ein Vielfaches von für alle , d.h. in der Primfaktorzerlegung von muss zumindest mit dem Exponenten vorkommen. Also muss nach Fakt ein Vielfaches des Produktes sein, also ein Vielfaches von . Damit ist in und die Abbildung ist injektiv.