Restklassenringe (Z)/Quadratreste/Anzahl/Fakt mit Beweisklappe
Es sei eine ungerade Primzahl. Dann gibt es quadratische Reste modulo und nichtquadratische Reste modulo .
Beweis
Zunächst ist ein quadratischer Rest. Wir betrachten im folgenden nur noch die Einheiten in (also die von verschiedenen Reste) und zeigen, dass es darunter gleich viele quadratische und nichtquadratische Reste gibt. Die Abbildung
ist offenbar ein Gruppenhomomorphismus der Einheitengruppe in sich selbst. Ein Element ist genau dann ein Quadratrest, wenn es im Bild dieses Homomorphismus liegt. Nach dem Isomorphiesatz ist „Bild = Urbild modulo Kern“, sodass wir den Kern bestimmen müssen. Der Kern besteht aus allen Elementen mit Dazu gehören und , und diese beiden Elemente sind verschieden, da ungerade ist. Aus der polynomialen Identität folgt, dass es keine weiteren Lösungen geben kann. Der Kern besteht also aus genau Elementen und damit besteht das Bild aus Elementen.