Riemannsche Flächen/Holomorphe Abbildung/Charakterisierungen/Fakt/Beweis

Beweis

Von (1) nach (2) und von (2) nach (3) sind Einschränkungen. Es sei (3) erfüllt. Es sei eine offene Teilmenge und eine holomorphe Funktion. Die Durchschnitte , , bilden dann eine offene Überdeckung von . Nach (3) sind dann die

holomorph. Da die Holomorphie eine lokale Eigenschaft ist, ist selbst holomorph.

Von (2) nach (4) und von (4) nach (5) ist klar. Es sei also (5) erfüllt, wir werden (3) zeigen. Ohne Einschränkung können wir ,

offen und

mit Kartengebieten annehmen. Es sei eine holomorphe Funktion auf . Es ist die Holomorphie von

für jedes nachzuweisen. Somit ist zu zeigen, dass

holomorph ist. Nach Voraussetzung (5) ist holomorph und somit ist auch diese Hintereinanderschaltung mit holomorph.