Ring/Ringhomomorphismus nach Endomorphismenring/Fakt/Beweis

Beweis

Für jedes ist die Multiplikation

ein Gruppenhomomorphismus, wie direkt aus der Distributivität und der Eigenschaft folgt. Die Gesamtabbildung ist also wohldefiniert.

Für die Gesamtzuordnung gilt zunächst und . Wegen

für jedes ist additiv. Die Multiplikativität folgt aus

Schließlich ist die Abbildung injektiv, da aus folgt, dass insbesondere sein muss.