Ringtheorie/Ring/Ausführlich/Definition

Ring

Eine Menge heißt ein Ring, wenn es zwei Verknüpfungen (genannt Addition und Multiplikation)

und (nicht notwendigerweise verschiedene) Elemente gibt, die die folgenden Eigenschaften erfüllen.

  1. Axiome der Addition
    1. Assoziativgesetz: Für alle gilt .
    2. Kommutativgesetz: Für alle gilt .
    3. ist das neutrale Element der Addition, d.h. für alle ist .
    4. Existenz des Negativen: Zu jedem gibt es ein Element mit .
  2. Axiome der Multiplikation
    1. Assoziativgesetz: Für alle gilt .
    2. ist das neutrale Element der Multiplikation, d.h. für alle ist .
  3. Distributivgesetz: Für alle gilt und .