Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Spezielle Quotientensingularität/E8/Funktionenkörper/Polynome/Aufgabe/Lösung
Sprache
Beobachten
Bearbeiten
<
Spezielle Quotientensingularität/E8/Funktionenkörper/Polynome/Aufgabe
Es ist
P
2
+
Q
3
+
R
5
=
(
−
U
15
(
1
+
V
)
7
V
3
)
2
+
(
−
U
10
(
1
+
V
)
5
V
2
)
3
+
(
−
U
6
(
1
+
V
)
3
V
)
5
=
U
30
(
1
+
V
)
14
V
6
+
−
U
30
(
1
+
V
)
15
V
6
+
−
U
30
(
1
+
V
)
15
V
5
=
U
30
(
1
+
V
)
14
V
5
(
1
V
−
1
(
1
+
V
)
V
−
1
1
+
V
)
=
U
30
(
1
+
V
)
14
V
5
⋅
1
+
V
−
1
−
V
(
1
+
V
)
V
=
0.
{\displaystyle {}{\begin{aligned}P^{2}+Q^{3}+R^{5}&={\left({\frac {-U^{15}}{(1+V)^{7}V^{3}}}\right)}^{2}+{\left({\frac {-U^{10}}{(1+V)^{5}V^{2}}}\right)}^{3}+{\left({\frac {-U^{6}}{(1+V)^{3}V}}\right)}^{5}\\&={\frac {U^{30}}{(1+V)^{14}V^{6}}}+{\frac {-U^{30}}{(1+V)^{15}V^{6}}}+{\frac {-U^{30}}{(1+V)^{15}V^{5}}}\\&={\frac {U^{30}}{(1+V)^{14}V^{5}}}{\left({\frac {1}{V}}-{\frac {1}{(1+V)V}}-{\frac {1}{1+V}}\right)}\\&={\frac {U^{30}}{(1+V)^{14}V^{5}}}\cdot {\frac {1+V-1-V}{(1+V)V}}\\&=0.\end{aligned}}}
Zur gelösten Aufgabe