Stirling-Zahl/2. Art/Partition/Extremwerte/Fakt/Beweis
Beweis
(1) und (4) sind klar. (2). Eine Partition in zwei Blöcke besteht aus einer nichtleeren Teilmenge mit einem nichtleeren Komplement, wobei es auf die Reihenfolge nicht ankommt. Da es in einer -elementigen Menge Teilmengen gibt, gibt es Teilmengenpaare. Da das Teilmengenpaar, das die leere Menge enthält, keine Partition ist, muss man abziehen. (3). Bei einer Partition mit Blöcken sind Blöcke einelementig und ein Block ist zweielementig. Deshalb ist eine solche Partition dasselbe wie die Festlegung einer zweielementigen Teilmenge, und davon gibt es nach Fakt.