Vektorraum/Parallelverschiebungen im Anschauungsraum/Beispiel
Der Anschauungsraum (oder die Ebene), wie man ihn sich elementargeometrisch vorstellt, ist kein Vektorraum! Weder gibt es in ihm eine natürliche noch kann man zwei Punkte darin miteinander addieren oder einen Punkt mit einer Zahl multiplizieren. Dies sieht anders aus, wenn man nicht den Anschauungsraum betrachtet, sondern alle möglichen Parallelverschiebungen im Anschauungsraum. Eine solche elementar-geometrische Verschiebung verschiebt jeden Punkt in eine bestimmte, für alle Punkte gleiche Richtung. Eine solche Verschiebungsrichtung kann man sich als einen Pfeil vorstellen. Die Menge der Parallelverschiebungen kann man in natürlicher Weise zu einem Vektorraum über machen. Der Nullvektor ist dann die Nullverschiebung, die also nichts verschiebt, sondern jeden Punkt an seinem Ort lässt. Die Addition von Verschiebungen ist die Hintereinanderausführung der Verschiebungen. Sie wird beschrieben, indem man das Ende des einen Verschiebungspfeils an die Spitze des anderen Verschiebungspfeils anlegt und den Gesamtpfeil betrachtet. Diese Verknüpfung ist kommutativ (Parallelogramm). Die Multiplikation mit einer positiven Zahl ist dann die Streckung oder Stauchung der Verschiebung um den als Skalar gegebenen Faktor, die Multiplikation mit einer negativen Zahl ist dann die Streckung oder Stauchung in die andere Richtung. Insbesondere ist das Negative einer Verschiebung die entgegengesetzte Verschiebung.
Wenn man allerdings im Anschauungsraum einen Punkt als Ursprungspunkt (oder Nullpunkt) auszeichnet, so kann man jeden Punkt mit dem Verbindungspfeil vom Ursprung zu diesem Punkt identifizieren und erhält dann eine Vektorraumstruktur auf dem Anschauungsraum.