|
{{
Vergleichskette/align
| \prod_{p \in T} \frac{1}{1-p^{-s} }
|| \frac{1}{1-p_1^{-s} } \cdots \frac{1}{1-p_k^{-s} }
|| \left(\sum_{i{{=|}}0}^\infty (p_1^{-s})^{i}\right) \cdots \left(\sum_{i{{=|}}0}^\infty (p_k^{-s})^{i}\right)
|| \sum_{0 \leq i_1, \ldots, i_k < \infty} (p_1^{-s})^{i_1} \cdots (p_k^{-s})^{i_k}
|| \sum_{0 \leq i_1, \ldots, i_k < \infty} ( p_1^{i_1} \cdots p_k^{i_k})^{-s}
|| \sum_{n \in M(T)} n^{-s}
|SZ=.
}}
|