Zählen/Nacheinander/Einführung/Textabschnitt

Unter Zählen verstehen wir die geordnete, systematische, prinzipiell unendliche Abfolge von wohlbestimmten, wohlunterschiedenen (insbesondere wiederholungsfreien) (sprachlichen oder schriftlichen) Symbolen. Wir erwähnen einige Möglichkeiten von solchen Abfolgen.

  1. Dies ist die Strichabfolge. Es wird einfach bei jedem Schritt ein zusätzlicher Strich hinzugefügt. Die Symbole sind die einzelnen Strichfolgen. Der Übergang zum nächsten Symbol ist besonders einfach, die einzelnen Symbole werden aber sehr schnell unhandlich.

  2. Hier hat man den Nachfolger der , den Nachfolger des Nachfolgers der , den Nachfolger des Nachfolgers des Nachfolgers der , u.s.w.

  3. Die Lautfolge

    Dies ist zwar sehr vertraut und man weiß, wie es weiter geht, das sprachliche Bildungsgesetz ist aber keineswegs trivial, und bei sehr großen Zahlen kommt man doch ins Schwitzen. Was kommt beispielsweise nach

    Es gibt keine allgemein anerkannte sprachliche Festlegung für beliebig weites Zählen. Jede sprachliche Festlegung, die jede beliebig große natürliche Zahl ausdrücken möchte, muss früher oder später auf eine Vervielfachung von Wörtern zurückgreifen, wie das im Fall der Strichfolge von Anfang an geschieht. Die Wörter werden jedenfalls auch beliebig lang, siehe w:Zahlennamen.

  4. Hier weiß man, wie die Folge ins Unendliche weitergeht. Statt bei zehn kann man mit der systematischen Vervielfachung auch deutlich später anfangen.

  5. Diese Art zu zählen (bzw. ohne das „und“) wird von einigen Leuten vorgeschlagen, um die verkehrte Aussprache von Einer- und Zehnerstellen und damit Zahlendreher zu vermeiden. Siehe den Verein w:Zwanzigeins (an der Namensgebung und auch auf der Seite des Vereins fällt auf, dass das Verhältnis zu den Zahlen von bis unklar ist).

  6. Was steht dazwischen und wie geht das weiter?

  7. Man kann das Alphabet natürlich auch auf andere Weisen zu einer unendlichen Folge fortsetzen.

  8. Hier ist das Bildungsgesetz bekannt und ziemlich einfach. Wenn die letzte Ziffer nicht ist, so wird sie um erhöht, für die nachfolgende Zahl muss man also in diesem System nur die letzte Ziffer durch den Nachfolger ersetzen. Wenn die letzte Ziffer eine ist, muss man sämtliche hinten aneinander liegende en durch en ersetzen und die unmittelbar davor liegende Ziffer durch ihren Nachfolger ersetzen (wie ist das zu verstehen, wenn die Zahl ausschließlich aus en besteht?).

Entscheidend ist, dass jeweils festgelegt ist, welches Symbol/Objekt als Nächstes kommt. Dies wird in der Regel durch eine mehr oder weniger komplexe Bildungsvorschrift beschrieben, die sagt, wie man aus einem Symbol das Nachfolgersymbol erhält.