Zählen/Nacheinander/Ergänzungen/Einführung/Textabschnitt
Wir halten die folgenden Eigenschaften eines sinnvollen Zählens fest.
- Es gibt ein Startelement, mit dem man das Zählen anfängt.
- Zu jeder Zahl gibt es eine eindeutig bestimme Nachfolgerzahl.
- Das Startelement ist selbst kein Nachfolger.
- Jede Zahl, die nicht das Startelement ist, besitzt einen eindeutig bestimmten Vorgänger.
- Durch Zählen erhält man ausgehend vom Startelement früher oder später alle Zahlen.
Damit schließen wir insbesondere aus, dass man im Kreis zählt, wie beispielsweise mit den Wochentagen Montag, Dienstag, ..., Sonntag, Montag. Da hat jeder Tag einen eindeutig bestimmten Vorgängertag und es gibt kein Startelement ohne Vorgänger. Die letzte Eigenschaft stellt sicher, dass man keine unnötigen Zahlen mitschleppt, die für das Zählen nicht gebraucht werden. Eine solche Zählmenge nennen wir ein Modell der natürlichen Zahlen oder schlicht natürliche Zahlen. Unabhängig vom Modell bezeichnen wir zu den Nachfolger als (später auch mit , im Moment haben wir aber die Addition noch nicht eingeführt).
Wir treffen noch eine wichtige Vereinbarung über das Startelement. In den Beispielen oben hatten wir das Zählen mit einem -ähnlichen Symbol begonnen. Von den soeben fixierten Eigenschaften ist die Bezeichnung des Startelements unerheblich. Im Folgenden werden wir allerdings die Zahlen dazu verwenden, Anzahlen von endlichen Mengen auszudrücken, also zu zählen in einem weiteren Sinne. Da es auch die leere Menge gibt, werden wir daher das Startelement nennen und den Nachfolger davon
Für uns ist also eine natürliche Zahl. Gründe dafür werden wir schon heute kennen lernen. Die natürlichen Zahlen werden mit bezeichnet, die Menge der positiven natürlichen Zahlen bezeichnen wir mit , da gehört die nicht dazu.