(1) Wir verwenden eine zu senkrechte Gerade durch und darauf einen Punkt
.
Dazu nehmen wir die zu senkrechte Gerade durch , die also parallel zu ist. Wir zeichnen die Gerade , die parallel zu ist und durch
verläuft. Der Schnittpunkt von
und
markieren wir als , sodass der Abstand von zu gleich ist. Jetzt zeichnen wir die Gerade durch
und
und dazu die parallele Gerade durch . Der Schnittpunkt von
mit
ist
,
da ein Parallelogramm bilden.
Zum Beweis von (2) und (3) verwenden wir wieder die zu senkrechte Gerade . Wir schlagen Kreise mit dem Nullpunkt als Mittelpunkt durch
, und
und markieren die entsprechenden Punkte auf als
, und .
Dabei wählt man als einen der beiden Schnittpunkte und
und
müssen dann auf den entsprechenden Halbgeraden sein. Um das Produkt zu erhalten, zeichnet man die Gerade durch
und und dazu die parallele Gerade durch . Diese Gerade schneidet in genau einem Punkt . Für diesen Punkt gilt nach dem Strahlensatz das Steckenverhältnis
-
Also ist
.
Um den Quotienten bei
zu erhalten, zeichnet man die Gerade durch
und
und dazu parallel die Gerade durch . Der Schnittpunkt von mit sei . Aufgrund des Strahlensatzes gilt die Beziehung
-