Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Zurückziehen einer Differentialform/Punktierte Ebene nach S^1/Längenform/Aufgabe/Lösung
Sprache
Beobachten
Bearbeiten
<
Zurückziehen einer Differentialform/Punktierte Ebene nach S^1/Längenform/Aufgabe
Es ist
π
∗
d
u
=
d
(
u
∘
π
)
=
d
(
x
x
2
+
y
2
)
=
∂
(
x
x
2
+
y
2
)
∂
x
d
x
+
∂
(
x
x
2
+
y
2
)
∂
y
d
y
=
x
2
+
y
2
−
x
2
(
x
2
+
y
2
)
−
1
/
2
x
2
+
y
2
d
x
−
x
y
x
2
+
y
2
3
d
y
=
x
2
+
y
2
−
x
2
x
2
+
y
2
3
d
x
−
x
y
x
2
+
y
2
3
d
y
=
y
2
x
2
+
y
2
3
d
x
−
x
y
x
2
+
y
2
3
d
y
{\displaystyle {}{\begin{aligned}\pi ^{*}du&=d(u\circ \pi )\\&=d{\left({\frac {x}{\sqrt {x^{2}+y^{2}}}}\right)}\\&={\frac {\partial {\left({\frac {x}{\sqrt {x^{2}+y^{2}}}}\right)}}{\partial x}}dx+{\frac {\partial {\left({\frac {x}{\sqrt {x^{2}+y^{2}}}}\right)}}{\partial y}}dy\\&={\frac {{\sqrt {x^{2}+y^{2}}}-x^{2}(x^{2}+y^{2})^{-1/2}}{x^{2}+y^{2}}}dx-{\frac {xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dy\\&={\frac {x^{2}+y^{2}-x^{2}}{{\sqrt {x^{2}+y^{2}}}^{3}}}dx-{\frac {xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dy\\&={\frac {y^{2}}{{\sqrt {x^{2}+y^{2}}}^{3}}}dx-{\frac {xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dy\end{aligned}}}
und
π
∗
d
v
=
d
(
v
∘
π
)
=
d
(
y
x
2
+
y
2
)
=
∂
(
y
x
2
+
y
2
)
∂
x
d
x
+
∂
(
y
x
2
+
y
2
)
∂
y
d
y
=
−
x
y
x
2
+
y
2
3
d
x
+
x
2
+
y
2
−
y
2
(
x
2
+
y
2
)
−
1
/
2
x
2
+
y
2
d
y
=
−
x
y
x
2
+
y
2
3
d
x
+
x
2
x
2
+
y
2
3
d
y
.
{\displaystyle {}{\begin{aligned}\pi ^{*}dv&=d(v\circ \pi )\\&=d{\left({\frac {y}{\sqrt {x^{2}+y^{2}}}}\right)}\\&={\frac {\partial {\left({\frac {y}{\sqrt {x^{2}+y^{2}}}}\right)}}{\partial x}}dx+{\frac {\partial {\left({\frac {y}{\sqrt {x^{2}+y^{2}}}}\right)}}{\partial y}}dy\\&={\frac {-xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dx+{\frac {{\sqrt {x^{2}+y^{2}}}-y^{2}(x^{2}+y^{2})^{-1/2}}{x^{2}+y^{2}}}dy\\&={\frac {-xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dx+{\frac {x^{2}}{{\sqrt {x^{2}+y^{2}}}^{3}}}dy.\end{aligned}}}
Somit ist
π
∗
(
−
v
d
u
+
u
d
v
)
=
−
(
v
∘
π
)
π
∗
d
u
+
(
u
∘
π
)
π
∗
d
v
=
−
y
x
2
+
y
2
(
y
2
x
2
+
y
2
3
d
x
−
x
y
x
2
+
y
2
3
d
y
)
+
x
x
2
+
y
2
(
−
x
y
x
2
+
y
2
3
d
x
+
x
2
x
2
+
y
2
3
d
y
)
=
1
(
x
2
+
y
2
)
2
(
(
−
y
3
−
x
2
y
)
d
x
+
(
x
y
2
+
x
3
)
d
y
)
=
1
x
2
+
y
2
(
−
y
d
x
+
x
d
y
)
.
{\displaystyle {}{\begin{aligned}\pi ^{*}(-vdu+udv)&=-(v\circ \pi )\pi ^{*}du+(u\circ \pi )\pi ^{*}dv\\&=-{\frac {y}{\sqrt {x^{2}+y^{2}}}}{\left({\frac {y^{2}}{{\sqrt {x^{2}+y^{2}}}^{3}}}dx-{\frac {xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dy\right)}+{\frac {x}{\sqrt {x^{2}+y^{2}}}}{\left({\frac {-xy}{{\sqrt {x^{2}+y^{2}}}^{3}}}dx+{\frac {x^{2}}{{\sqrt {x^{2}+y^{2}}}^{3}}}dy\right)}\\&={\frac {1}{{\left(x^{2}+y^{2}\right)}^{2}}}{\left({\left(-y^{3}-x^{2}y\right)}dx+{\left(xy^{2}+x^{3}\right)}dy\right)}\\&={\frac {1}{x^{2}+y^{2}}}{\left(-ydx+xdy\right)}.\,\end{aligned}}}
Zur gelösten Aufgabe