Abbildung/Injektiv/Surjektiv/Hintereinanderschaltung/Einführung/Textabschnitt


Es seien und Mengen und es sei

eine Abbildung. Dann heißt injektiv, wenn für je zwei verschiedene Elemente auch und verschieden sind.

Beim Nachweis der Injektivität einer Abbildung geht man häufig so vor, dass man zu zwei gegebenen Elementen und aus der Voraussetzung erschließt, dass ist. Dies ist oft einfacher zu zeigen, als aus auf zu schließen.


Es seien und Mengen und es sei

eine Abbildung. Dann heißt surjektiv, wenn es für jedes mindestens ein Element mit

gibt.


Wir betrachten zu einem Fußballspiel die Abbildung, die jedem Tor, das die Mannschaft erzielt hat, den zugehörigen Torschützen zuordnet. Es gebe keine Eigentore und keine Auswechslungen, die Tore von werden mit durchnummeriert. Dann liegt eine Abbildung

mit

Die Injektivität von bedeutet, dass jeder Spieler höchstens ein Tor geschossen hat, und die Surjektivität bedeutet, dass jeder Spieler mindestens ein Tor geschossen hat.



Es sei die Menge aller (lebenden oder verstorbenen) Menschen. Wir untersuchen die Abbildung

die jedem Menschen seine (biologische) Mutter zuordnet. Dies ist eine wohldefinierte Abbildung, da jeder Mensch eine eindeutig bestimmte Mutter besitzt. Diese Abbildung ist nicht injektiv, da es ja verschiedene Menschen (Geschwister) gibt, die die gleiche Mutter haben. Sie ist auch nicht surjektiv, da nicht jeder Mensch Mutter von jemandem ist.



Die Abbildung

ist weder injektiv noch surjektiv. Sie ist nicht injektiv, da die verschiedenen Zahlen und beide auf abgebildet werden. Sie ist nicht surjektiv, da nur nichtnegative Elemente erreicht werden (eine negative Zahl hat keine reelle Quadratwurzel). Die Abbildung

ist injektiv, aber nicht surjektiv. Die Injektivität folgt beispielsweise so: Wenn ist, so ist eine Zahl größer, sagen wir

Doch dann ist auch und insbesondere . Die Abbildung

ist nicht injektiv, aber surjektiv, da jede nichtnegative reelle Zahl eine Quadratwurzel besitzt. Die Abbildung

ist injektiv und surjektiv.



Es seien und Mengen und es sei

eine Abbildung. Dann heißt bijektiv, wenn sowohl injektiv als auch surjektiv ist.

Die Frage, ob eine Abbildung die Eigenschaften injektiv oder surjektiv besitzt, kann man anhand der Gleichung

(in den beiden Variablen und ) erläutern. Die Surjektivität bedeutet, dass es zu jedem mindestens eine Lösung

für diese Gleichung gibt, die Injektivität bedeutet, dass es zu jedem maximal eine Lösung für diese Gleichung gibt, und die Bijektivität bedeutet, dass es zu jedem genau eine Lösung für diese Gleichung gibt. Die Surjektivität entspricht also der Existenz von Lösungen, die Injektivität der Eindeutigkeit von Lösungen. Beide Fragestellungen durchziehen die Mathematik und können selbst wiederum häufig als die Surjektivität oder die Injektivität einer geeigneten Abbildung interpretiert werden.



Es sei eine bijektive Abbildung. Dann heißt die Abbildung

die jedes Element auf das eindeutig bestimmte Element mit abbildet, die Umkehrabbildung zu .


Es seien und Mengen und

und

Abbildungen. Dann heißt die Abbildung

die Hintereinanderschaltung der Abbildungen und .

Es gilt also

wobei die linke Seite durch die rechte Seite definiert wird. Wenn die beiden Abbildungen durch funktionale Ausdrücke gegeben sind, so wird die Hintereinanderschaltung dadurch realisiert, dass man den ersten Ausdruck anstelle der Variablen in den zweiten Ausdruck einsetzt (und nach Möglichkeit vereinfacht).



Es seien und Mengen und es seien

und

Abbildungen.

Dann ist

Beweis

Siehe Aufgabe.