Jede Quadrik hat die Gestalt
-
mit Koeffizienten . Die Aussage beruht darauf, dass man hier sechs freie Variablen hat, denen fünf Bedingungen gegenüber stehen. Für die fünf Punkte ergeben sich die fünf Bedingungen
-
-
-
-
- .
Das sind fünf lineare Bedingungen in den sechs Variablen (hier sind also die griechischen Buchstaben die Variablen, nicht und ). Dafür gibt es eine nicht-triviale Lösung, bei der nicht
alle Koeffizenten null sind. Sind in einer gefundenen Lösung , so liegt zunächst die Gleichung einer Geraden, also keine Quadrik vor. Man kann daraus aber durch Multiplikation mit einer weiteren Geradengleichung eine Quadrik erhalten.