Bilinearform/Gramsche Matrix/Einführung/Textabschnitt
Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es sei eine Basis von . Dann heißt die -Matrix
die Gramsche Matrix von bezüglich dieser Basis.
In Beispiel bildet die Gramsche Matrix bezüglich der Standardbasis des . Wenn die Gramsche Matrix zu einer Bilinearform bezüglich einer Basis gegeben ist, so kann man daraus für beliebige Vektoren berechnen. Man schreibt und und erhält mit dem allgemeinen Distributivgesetz
Man erhält also den Wert der Bilinearform an zwei Vektoren, indem man die Gramsche Matrix auf das Koordinatentupel des zweiten Vektors anwendet und das Ergebnis (ein Spaltenvektor) mit dem Koordinatentupel des ersten Vektors als Zeilentupel von links multipliziert. Kurz und ungenau ist also
Es sei ein Körper, ein endlichdimensionaler -Vektorraum und eine Bilinearform auf . Es seien und zwei Basen von und es seien bzw. die Gramschen Matrizen von bezüglich dieser Basen. Zwischen den Basiselementen gelte die Beziehungen
die wir durch die Übergangsmatrix ausdrücken.
Dann besteht zwischen den Gramschen Matrizen die Beziehung
Es ist