Chevalley-Shephard-Todd/Fakt

Der Satz von Chevalley-Shephard-Todd

Es sei ein algebraisch abgeschlossener Körper der Charakteristik null. Die endliche Gruppe operiere linear und treu auf dem -Vektorraum . Dann sind folgende Aussagen äquivalent.

  1. ist eine Reflektionsgruppe.
  2. Der Invariantenring ist (isomorph zu einem) ein Polynomring (in Variablen).