Differentialgleichung/Höhere Ordnung/Einführende Beispiele/Textabschnitt
Viele physikalische Bewegungsprozesse sind nicht dadurch determiniert, dass zu jedem Zeit- und Ortspunkt die Bewegungsrichtung (also die gerichtete Geschwindigkeit) vorgegeben wird, sondern dadurch, dass zu jedem Zeit- und Ortspunkt eine Kraft auf ein Teilchen wirkt, die dieses beschleunigt. In diesem Fall kann die Bewegung also nicht durch die erste Ableitung (Geschwindigkeit) modelliert werden, sondern durch die zweite Ableitung (Beschleunigung). Typische Beispiele hierzu sind die durch die Gravitation oder eine Federkraft hervorgerufenen Bewegungen.
Ein Gegenstand der Masse wird im Vakuum aus einer Höhe zum Zeitpunkt losgelassen und fällt unter dem Einfluss der Gravitation zu Boden (freier Fall im Vakuum). Dabei wirkt auf den Körper die Gravitationskraft (die Erdbeschleunigung nehmen wir für diesen Bewegungsvorgang als konstant an), die ihn nach dem Gesetz „Kraft ist Masse mal Beschleunigung“ beschleunigt. Die Beschleunigung ist also konstant und unabhängig von der Masse. Dies bedeutet, dass die Geschwindigkeit des Körpers die Differentialgleichung
erfüllt (die Wahl des Vorzeichens bewirkt, dass der Körper ins Negative fällt). Die durch die Anfangsbedingung (der Gegenstand ruhe zum Zeitpunkt ) festgelegte Lösung für die Geschwindigkeit ist daher
Der zurückgelegte Weg des Körpers ergibt sich wiederum aus der Differentialgleichung
die besagt, dass die Ableitung des Weges nach der Zeit die Momentangeschwindigkeit beschreibt. Die Lösung davon ist
Den Gesamtvorgang kann man durch die Differentialgleichung zweiter Ordnung
ausdrücken.
Wir betrachten die Bewegung eines Punktes auf einer Geraden, wobei die auf den Punkt (in Richtung des Nullpunkts) wirkende Kraft (bzw. Beschleunigung) proportional zur Lage des Punktes sein soll. Wenn der Punkt sich in befindet und sich in die positive Richtung bewegt, so wirkt diese Kraft bremsend, wenn er sich in die negative Richtung bewegt, so wirkt die Kraft beschleunigend. Mit der Proportionalitätskonstante gelangt man zur Differentialgleichung (zweiter Ordnung)
die diesen Bewegungsvorgang beschreibt. Als Anfangsbedingung wählen wir und , zum Zeitpunkt soll die Bewegung also durch den Nullpunkt gehen und dort die Geschwindigkeit besitzen. Man kann sofort die Lösung
angeben.
Ein Gegenstand der Masse wird aus der Höhe losgelassen und fällt unter dem Einfluss der Gravitation zu Boden. Dabei wirkt auf den Körper einerseits die Gravitationskraft (die Erdbeschleunigung nehmen wir für diesen Bewegungsvorgang als konstant an), die ihn beschleunigt, andererseits wird diese Beschleunigung durch den Luftwiderstand verringert. Nach einem physikalischen Gesetz ist die Reibung (bei relativ kleinen Geschwindigkeiten) proportional und entgegengesetzt zur Geschwindigkeit des Körpers. Es sei der Reibungswiderstand, also dieser Proportionalitätsfaktor. Die auf den Körper (nach unten) wirkende Gesamtkraft ist daher
Wegen
gilt daher für diesen Bewegungsvorgang die Differentialgleichung zweiter Ordnung
Wenn wir dies mit der Ableitungsfunktion schreiben, so erhalten wir die Bedingung
die nach Beispiel die Lösungen
besitzt. Durch Intergration erhält man für die Differentialgleichung zweiter Ordnung die Lösungsfunktionen
mit beliebigen Konstanten . Siehe auch Aufgabe.