Differenzierbare reguläre Abbildung/R^n/Faser/Orientierung über Gradienten/Bemerkung
In der Situation von Fakt erhält man nicht nur eine nullstellenfreie Volumenform, sondern auch eine Orientierung auf jedem Tangentialraum und überhaupt eine orientierte Mannigfaltigkeit. Man definiert die Orientierung auf dadurch, dass man festlegt, dass eine Basis die Orientierung repräsentiert, wenn die erweiterte Basis die Standardorientierung des repräsentiert. Diese Festlegung hängt von ab. Wenn man beispielsweise durch ersetzt, so ändert sich bei ungeradem die Orientierung.