Elementare und algebraische Zahlentheorie/12/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 2 }
\renewcommand{\avier}{ 2 }
\renewcommand{\afuenf}{ 3 }
\renewcommand{\asechs}{ 5 }
\renewcommand{\asieben}{ 4 }
\renewcommand{\aacht}{ 4 }
\renewcommand{\aneun}{ 3 }
\renewcommand{\azehn}{ 4 }
\renewcommand{\aelf}{ 1 }
\renewcommand{\azwoelf}{ 0 }
\renewcommand{\adreizehn}{ 0 }
\renewcommand{\avierzehn}{ 0 }
\renewcommand{\afuenfzehn}{ 0 }
\renewcommand{\asechzehn}{ 0 }
\renewcommand{\asiebzehn}{ 34 }
\renewcommand{\aachtzehn}{ }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellesechzehn
\klausurnote
\newpage
\setcounter{section}{K}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {zyklische} {} Gruppe $G$.
}{Eine \stichwort {Carmichael-Zahl} {.}
}{Ein \stichwort {endlicher} {} Körper.
}{Ein \stichwort {Divisor} {} zu einem Zahlbereich $R$.
}{Eine
\stichwort {zentralsymmetrische} {}
Teilmenge
\mavergleichskette
{\vergleichskette
{T
}
{ \subseteq }{\R^n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Die \stichwort {Äquivalenz} {} von binären quadratischen Formen. }
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {zweite Ergänzungssatz} {} zum quadratischen Reziprozitätsgesetz.}{Der Satz über gerade vollkommene Zahlen.}{Der Satz über die Charakterisierung eines diskreten Bewertungsringes.}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Bestimme die kleinste natürliche Zahl, deren letzte Ziffer eine $3$ ist, die kein Vielfaches der $3$ ist und die keine \definitionsverweis {Primzahl}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es sei $n$ eine ganze Zahl, von der die folgenden Eigenschaften bekannt sind:
\aufzaehlungfuenf{$n$ ist negativ.
}{$n$ ist ein Vielfaches von $8$, aber nicht von
\mathl{-16}{.}
}{$n$ ist kein Vielfaches von
\mathl{36}{.}
}{$n$ ist ein Vielfaches von $150$, aber nicht von
\mathl{125}{.}
}{In der Primfaktorzerlegung von $n$ gibt es keine Primzahl, die größer als $5$ ist.
}
Was ist $n$?
}
{} {}
\inputaufgabegibtloesung
{3}
{
Zeige, dass der \definitionsverweis {Kern}{}{} eines \definitionsverweis {Ringhomomorphismus}{}{} \maabbdisp {\varphi} {R} {S } {} ein \definitionsverweis {Ideal}{}{} in $R$ ist.
}
{} {}
\inputaufgabegibtloesung
{5}
{
Zeige, dass der Ring der Gaußschen Zahlen mit der Normfunktion ein euklidischer Bereich ist.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Bestimme in
\mathl{\Z[ { \mathrm i} ]}{} mit Hilfe des euklidischen Algorithmus den größten gemeinsamen Teiler von
\mathl{23+2 { \mathrm i}}{} und
\mathl{1+23 { \mathrm i}}{.}
}
{} {}
\inputaufgabegibtloesung
{4}
{
Man gebe eine surjektive Abbildung \maabbdisp {\varphi} {\Z} { \Z/(3) } {} an, die mit der Multiplikation verträglich \zusatzklammer {also ein Monoidhomomorphismus} {} {} ist, aber kein \definitionsverweis {Ringhomomorphismus}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Es sei
\mathl{p}{} eine ungerade Primzahl. Begründe unter Verwendung der Tatsache, dass die Einheitengruppe
\mathl{{ \left( \Z/(p) \right) }^{\times}}{} zyklisch ist, dass
\mathl{-1}{} ein Quadratrest modulo
\mathl{p}{} genau dann ist, wenn
\mathl{p=1 \mod 4}{} ist.
}
{} {}
\inputaufgabe
{4}
{
Suchen Sie für die folgenden zusammengesetzten Zahlen $n$ eine zu $n$ teilerfremde Zahl $a$ derart, dass $a^{\frac{n-1}{2} } \neq \left( \frac{a}{n} \right)$ in $\Z/(n)$ gilt.
a) $n= 125$.
b) $n= 63$.
}
{} {}
\inputaufgabegibtloesung
{1}
{
Finde die primitiven Einheitswurzeln in
\mathl{\Z/(5)}{.}
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}
\inputaufgabe
{0}
{
}
{} {}