Elementare und algebraische Zahlentheorie/4/Klausur/latex

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 3 }

\renewcommand{\avier}{ 4 }

\renewcommand{\afuenf}{ 0 }

\renewcommand{\asechs}{ 3 }

\renewcommand{\asieben}{ 2 }

\renewcommand{\aacht}{ 9 }

\renewcommand{\aneun}{ 0 }

\renewcommand{\azehn}{ 0 }

\renewcommand{\aelf}{ 0 }

\renewcommand{\azwoelf}{ 0 }

\renewcommand{\adreizehn}{ 0 }

\renewcommand{\avierzehn}{ 0 }

\renewcommand{\afuenfzehn}{ 0 }

\renewcommand{\asechzehn}{ 0 }

\renewcommand{\asiebzehn}{ 27 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{K}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Assoziiertheit} {} von Elementen
\mathl{a,b}{} in einem kommutativen Ring $R$.

}{Ein \stichwort {Hauptidealbereich} {.}

}{Ein \stichwort {pythagoreisches Tripel} {.}

}{Der \stichwort {Grad} {} einer endlichen Körpererweiterung
\mathl{K \subseteq L}{.}

}{Die \stichwort {konvexe Hülle} {} von
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{ \R^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Den \stichwort {Divisor zu einem Ideal} {}
\mathl{{\mathfrak a} \neq 0}{} in einem Zahlbereich $R$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Charakterisierungssatz für Restklassenringe von $\Z$ mit zyklischer Einheitengruppe.}{Der Satz über die Charakterisierung von pythagoreischen Tripeln.}{Der Satz über Primideale in einem Zahlbereich.}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige durch Induktion, dass jede natürliche Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Zerlegung in \definitionsverweis {Primzahlen}{}{} besitzt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien drei verschiedene Zahlen
\mavergleichskette
{\vergleichskette
{a,b,c }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben. Wie viele Teiler besitzt das Produkt
\mathl{a \cdot b \cdot c}{} minimal?

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $R$ ein \definitionsverweis {kommutativer Ring}{}{} mit $p$ Elementen, wobei $p$ eine \definitionsverweis {Primzahl}{}{} sei. Zeige, dass $R$ ein \definitionsverweis {Körper}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Betrachte die Quadratrestgruppe
\mathdisp {\mathbb Q^\times/\mathbb Q^{\times 2}} { , }
wobei
\mathl{\mathbb Q^{\times 2}}{} die Untergruppe der Quadrate bezeichne. Zeige, dass es zu jeder Restklasse
\mathl{x \in \mathbb Q^\times/\mathbb Q^{\times 2}}{} einen Repräsentanten aus $\Z$ gibt.

}
{} {}




\inputaufgabegibtloesung
{9}
{

Zeige, dass die diophantische Gleichung
\mavergleichskettedisp
{\vergleichskette
{ x^4+y^4 }
{ =} { z^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} keine ganzzahlige nichttriviale Lösung besitzt.

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}