Endliche Symmetriegruppe/Halbachsensysteme/Isotropiegruppe/Textabschnitt


Lemma  

Es sei eine endliche Untergruppe der Gruppe der eigentlichen, linearen Isometrien des . Zu einer Halbachse von sei

Dann sind für zwei äquivalente Halbachsen und die Gruppen und isomorph.

Insbesondere besitzen sie die gleiche Ordnung.

Beweis  

Es sei , was es gibt, da die beiden Halbachsen nach Voraussetzung äquivalent sind. Dann hat man aber sofort den Gruppenisomorphismus

Wegen

führt dieser innere Automorphismus von in der Tat die beiden Gruppen ineinander über.

Bei handelt es sich trivialerweise um eine Untergruppe von . Man nennt sie die Isotropiegruppe zur Halbachse . Das Lemma besagt also, dass äquivalente Halbachsen isomorphe Isotropiegruppen besitzen. Wenn ist und eine Halbachse in der Halbachsenklasse , und die Untergruppe Elemente besitzt, so gibt es in genau verschiedene Halbachsen. Die fixierte Halbachse definiert nämlich eine surjektive Abbildung

Dabei geht auf , und ebenso gibt es für jede Halbachse genau Urbilder.