Erdkugel/Temperatur als stetige Funktion/Beispiel

Wir gehen davon aus, dass die Temperatur stetig vom Ort abhängt, d.h. die Temperatur (zu einem bestimmten Zeitpunkt) ist eine stetige Funktion

wobei eine Teilmenge ist. Es hängt dann von topologischen Eigenschaften des Gebietes, für das man sich interessiert, ab, ob es einen wärmsten

(oder kältesten) Punkt in gibt. Bei (dem naiven unbeschränkten Weltall) muss es keinen wärmsten Punkt geben, z. B. wenn es eine unendliche Folge von zunehmend heißeren Sonnen gibt. Auf der Erdoberfläche gibt es hingegen einen wärmsten Punkt, da die Erdoberfäche kompakt ist. Das Gleiche gilt für die gesamte Erdkugel einschließlich der Erdoberfläche. Für das Erdinnere, also die Erdkugel ohne die Erdoberfläche, muss es keinen kältesten Punkt geben, da die Erde zum Rand hin zunehmend kälter werden könnte.