Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Fourier-Transformation/Faltungssatz/Fakt/Beweis
Sprache
Beobachten
Bearbeiten
<
Fourier-Transformation/Faltungssatz/Fakt
Beweis
Nach
Fakt
(für Dichten) angewendet auf die Addition und
Fakt
ist
f
∗
g
^
(
u
)
=
1
(
2
π
)
n
/
2
⋅
∫
R
n
e
−
i
⟨
u
,
t
⟩
(
f
∗
g
)
(
u
)
d
t
=
1
(
2
π
)
n
/
2
⋅
∫
R
n
×
R
n
e
−
i
⟨
u
,
t
1
+
t
2
⟩
f
(
t
1
)
g
(
t
2
)
d
t
1
d
t
2
=
1
(
2
π
)
n
/
2
⋅
(
∫
R
n
e
−
i
⟨
u
,
t
1
⟩
f
(
t
1
)
d
t
1
)
⋅
(
∫
R
n
e
−
i
⟨
u
,
t
2
⟩
g
(
t
2
)
d
t
2
)
=
(
2
π
)
n
/
2
⋅
f
^
(
u
)
⋅
g
^
(
u
)
.
{\displaystyle {}{\begin{aligned}{\widehat {f*g}}({\mathfrak {u}})&={\frac {1}{(2\pi )^{n/2}}}\cdot \int _{\mathbb {R} ^{n}}e^{-{\mathrm {i} }\left\langle {\mathfrak {u}},{\mathfrak {t}}\right\rangle }(f*g)({\mathfrak {u}})d{\mathfrak {t}}\\&={\frac {1}{(2\pi )^{n/2}}}\cdot \int _{\mathbb {R} ^{n}\times \mathbb {R} ^{n}}e^{-{\mathrm {i} }\left\langle {\mathfrak {u}},{\mathfrak {t}}_{1}+{\mathfrak {t}}_{2}\right\rangle }f({\mathfrak {t}}_{1})g({\mathfrak {t}}_{2})d{\mathfrak {t}}_{1}d{\mathfrak {t}}_{2}\\&={\frac {1}{(2\pi )^{n/2}}}\cdot {\left(\int _{\mathbb {R} ^{n}}e^{-{\mathrm {i} }\left\langle {\mathfrak {u}},{\mathfrak {t}}_{1}\right\rangle }f({\mathfrak {t}}_{1})d{\mathfrak {t}}_{1}\right)}\cdot {\left(\int _{\mathbb {R} ^{n}}e^{-{\mathrm {i} }\left\langle {\mathfrak {u}},{\mathfrak {t}}_{2}\right\rangle }g({\mathfrak {t}}_{2})d{\mathfrak {t}}_{2}\right)}\\&=(2\pi )^{n/2}\cdot {\hat {f}}({\mathfrak {u}})\cdot {\hat {g}}({\mathfrak {u}}).\end{aligned}}}
Zur bewiesenen Aussage