Fuzzylogik/Dichten und Zugehörigkeitsfunktionen
Einleitung
BearbeitenIn dieser Lerneiheit werden Dichtefunktionen verwendet, um Zugehörigkeitsfunktionen für Klassen zu generieren. Die Lernressource kann als Wiki2Reveal Folien angezeigt werden.
Gliederung
BearbeitenDiese Lernressource zu Fuzzylogik, Dichten und Zugehörigkeitsfunktionen gliedert sich in folgende Teilaspekte:
- (1) aus diskreten Daten stetige Dichtefunktionen zu generieren
- (2) aus Dichtenfunktionen eine Fuzzy-Klassifikation mit Zugehörigkeitsfunktion für Klassen zu erzeugen.
Lernvoraussetzungen
BearbeitenDie Lernressource zum Thema Fuzzylogik/Dichten und Zugehörigkeitsfunktionen hat die folgenden Lernvoraussetzungen, die zum Verständnis der nachfolgenden Ausführungen hilfreich bzw. notwendig sind.
- (von Daten zur Dichtefunktion) die Erzeugung von Dichtefunktion stellt in dieser Lerneinheit ein Zwischenschritt für die Erzeugung von Fuzzymengen dar.
- (Fuzzy-Klassifikation) notwendig, da aus Dichtefunktionen eine Zerlegung des Grundraumes in Fuzzymenge für Klassen vorgenommen wird.
Aufgaben für Lernende / Studierende
BearbeitenMit den folgenden Aufgaben zum Thema Dichten und Zugehörigkeitsfunktionen werden
- aus Daten, differenzierbare Dichtefunktionen erzeugt und
- aus Dichtefunktionen Fuzzy-Zugehörigkeitsfunktionen.
Erzeugung von Dichtefunktionen aus Daten
BearbeitenAus der Stochastik ist die Cauchy-Verteilung bekannt. Verwenden Sie in einem normierten Raum die folgende Glockenkurve:
Bemerkung zu den Parametern
Bearbeiten- ist das Argument, an dem die Glockenkurve ausgewertet wird.
- ist das Zentrum der Glockenkurve
- legt den Funktionswert im Zentrum der Glockenkurve. Je weiter man sich mit von dem Zentrum entfernt, desto betragsmäßig kleiner wird der Funktionswert .
Eindimensionaler Fall
BearbeitenDichtefunktion der Cauchy-Verteilung für verschiedene Werte der beiden Parameter. Dabei gilt: im Bild entspricht s in der obigen Gleichung.
Wahrscheinlichkeitsdichte
BearbeitenDie Cauchy-Verteilung ist eine stetige Wahrscheinlichkeitsverteilung, die die folgende Wahrscheinlichkeitsdichte besitzt:
Der Quotient sorgt für die Normierung des Integrals.
Daten Dichtefunktion
BearbeitenDie Daten für die mehrdimensionale Dichtefunktion bestehen aus Datenpunkten der Form :
Die Werte geben die positive Masse an, die einer Umgebung der Datenpunkte als Eingabenvektoren zugeordnet wird.
Definition der Dichtefunktion mit Glockenkurven
BearbeitenNun definiert man Dichtefunktionen in Anlehnung an die Cauchy-Verteilung mit
Beispiel
BearbeitenAls einführendes Beispiel zum Thema Fuzzylogik, Dichten und Zugehörigkeitsfunktionen dient dabei der Veranschaulichung der Erzeugung von Dichtefunktionen, über die dann Zugehörigkeitsfunktionen generiert werden.
Von Datenpunkten zu Dichten
BearbeitenDie folgende Abbildung zeigt 4 Datenpunkte. Für jeden Datenpunkt wird dann eine Cauchy-Dichte verwendet, die durch den Punkt läuft (also ). Der Graph der einzelnen Cauchy-Dichten sind grau darstellt. Die gesuchte Dichte (rot) ist die Summe der Cauchydichten,
Graph der aggregierten Dichtefunktion
BearbeitenBemerkung - Interpolation
BearbeitenAuch wenn die einzelnen Cauchy-Dichten Dichtefunktion für jeweils durch den zugehörigen Datenpunkte laufen, so interpoliert in der Regel keinen Punkt mehr. Durch das aus den Datenpunkten wird weiteren Verlauf der Konstruktion die Masse kodiert, die in der Dichte durch das Datum repräsentiert werden soll.
Streuparameter und Glättung der Dichte
BearbeitenDie folgende Animation zeigt, wie der Streuparemeter auf die Dichte wirkt. Ein großes glättet die Dichte.
Animation - Streuparameter s
BearbeitenNormalisierung der Masse unter der Dichtefunktion
BearbeitenDie Masse der Dichtefunktion entspricht in der Regel nicht der Summe der Masseparameter für die Datenpunkte .
Berechnung des Integrals über die Dichte
BearbeitenDaher berechnet man zunächst das Integral von normalisiert dann die Dichtefunktion zu :
Stammfunktion
BearbeitenDas uneigentliche Integral kann durch folgende Stammfunktion von berechnet werden:
Normalisierte Dichte
BearbeitenMit dem berechneten Integral kann die Masse unter der Kurve auch mit der Verteilungsfunktion der Cauchy-Verteilung berechnet werden. Die Dichtefunktion lautet dann:
Damit erhält für das Intergral über die die aggregierte Masse der :
Bemerkung - Wahrscheinlichkeitsdichte
BearbeitenMöchte man aus der Dichte eine Wahrscheinlichkeitsdichte erzeugen, definiert man wie folgt: lautet dann:
Um die Masse durch die weiterhin in der Dichte zu kodieren, wird im folgenden weiterhin verwendet.
Definitionsbereich nicht IR
BearbeitenIn bestimmten Fällen macht es Sinn, dass man die Masse der Dichtefunktion bezogen auf eine messbare Teilmenge einschränkt, wobei für die alle in liegen. Die Masseerhaltung in der Dichte wird in diesem Beispiel an einem Intervall veranschaulicht.
Masseerhaltung in der Dichte bei Intervallen
BearbeitenWählt man als messbare Teilmenge , wobei für alle gilt, so erhält man als Integral:
Normalisierung der Masse
BearbeitenEin Normalisierung der Masse für erfolgt daher mit folgenden Quotienten:
Damit erhält man .
Wahrscheinlichkeitsdichte auf einem Intervall
BearbeitenSoll aus der Dichtefunktion durch Normalisierung eine Wahrscheinlichkeitsdichte auf entstehen, erfolgt die Normalisierung analog mit folgenden Koeffizienten:
Von Dichten zu Fuzzy-Zugehörigkeitsfunktionen
BearbeitenMit dem obigen Beispiel wurde bereits eine Dichtefunktion erzeugt, die die Masse der entweder auf ganz bzw. auf einem Teilintervall erhält. Wir nehmen nun an, dass auf diesem Wege zwei masseerhaltende Dichtefunktionen und erzeugt wurden.
Positivität und Konvexkombinationen
BearbeitenDa die Cauchy-Dichten für die Eigenschaft haben, für alle positiv zu sein, gilt dies auch für und .
Definition der Fuzzy-Zugehörigkeitsfunktionen - Beispiel
BearbeitenDie Definition der Fuzzy-Zugehörigkeitsfunktionen erfolgt dann dann durch:
Mit der obigen Definition gilt für alle .
Fazit - Beispiel
BearbeitenInsgesamt wurde an dem Beispiel gezeigt, wie man mit Cauchy-Dichten für Daten masseerhaltende Dichten erzeugt werden, der Beitrag zur Gesamtmasse der Dichte durch die Datenpunkte bestimmt wurde und mit den Dichten eine Zerlegung in Fuzzy-Klassen umgesetzt werden kann.
Mehrdimensionale Cauchy-Dichten
BearbeitenFür die Verallgemeinerung werden nun Dichtefunktionen generiert, die auf Basis der Cauchy-Dichte auf definiert werden.
Zweidimensionaler Grundraum für Daten
BearbeitenDie Daten für die zweidimensionalen Grundraum für die bestehen aus Datenpunkten der Form :
Die Werte sind positive Wichtungen der Datenpunkte der Eingabenvektoren .
Definition der Dichtefunktion mit Cauchy-Dichten
BearbeitenIm ergibt sich für die grundlegenden Cauchy-Dichtefunktionen in Anlehnung an die Cauchy-Verteilung folgende Darstellung:
Aggregierte Dichtefunktion 1
BearbeitenDie folgende Dichtefunktion wurde mit 3 Datenpunkte der Form mit , Die unterschiedlichen Massen an den Stellen ist an der unterschiedlichen Höhe der Dichtefunktionen ersichtlich
Graph - aggregierte Dichtefunktion 1
BearbeitenAggregierte Dichtefunktion 2
BearbeitenDie zweite Dichtefunktion wurde mit 4 Datenpunkte der Form , wobei wieder der Umgebung von die Masse zugeordnet wird. Einige Datenpunkte liegen am Rand des geplotteten Bereiches.
Graph - aggregierte Dichtefunktion 2
BearbeitenAufgabe - zweidimensionale Dichten
BearbeitenErzeugen Sie selbst zwei Dichtefunktionen in Maxima CAS oder mit CAS4Wiki und generieren Sie daraus eine Zerlegung des Grundraumes in zwei Fuzzy-Klassen.
Verallgemeinerung von positiven Dichtefunktionen
BearbeitenFür die Allgemeinerung betrachtet man nun mehrdimensionale Dichten[1] und schränkt die gegebenen Dichtefunktionen nicht mehr auf die Erzeugung durch Cauchy-Dichten ein. Ausgangspunkt für die Erzeugung von Fuzzy-Zugehörigkeitsfunktionen könnten daher auf Funktionen der Form:
Die Funktion ist positiv auf ganz
Graph der Dichtefunktion
BearbeitenAufgabe - zweidimensionale Fuzzy-Zugehörigkeitsfunktionen
BearbeitenErzeugen Sie analog zum eindimensionalen Beispiel mit 3 zweidimensionalen Fuzzy-Zugehörigkeitsfunktionen, wobei 1 bzw. 2 Dichtefunktionen über Cauchy-Dichten erzeugt wurden und eine Dichte mit der obigen trigonometrischen Dichtefunktion erzeugt wurde. Plotten Sie dann die Fuzzy-Zugehörigkeitsfunktionen.
Literatur/Quellennachweise
Bearbeiten- ↑ Roth, Z. E., & Baram, Y. (1996). Multidimensional density shaping by sigmoids. IEEE Transactions on Neural Networks, 7(5), 1291-1298.
Siehe auch
BearbeitenSeiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Fuzzylogik' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Fuzzylogik/Dichten%20und%20Zugeh%C3%B6rigkeitsfunktionen
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.