Graduierte Algebra/Ring/Erläuterung/Bemerkung
In einer -graduierten -Algebra besitzt jedes Element eine eindeutige Darstellung
wobei nur endlich viele der ungleich sein können. Die heißen dabei die homogenen Komponenten von , die heißen ebenfalls die homogenen Komponenten von (oder -ten Stufen) und Elemente heißen homogen vom Grad . Die Gruppe heißt die graduierende Gruppe. Der Fall ist erlaubt.
Durch eine Graduierung wird die Multiplikation auf einer Algebra übersichtlicher strukturiert. Man muss lediglich für homogene Elemente und die Produkte kennen, dadurch ist schon die gesamte Multiplikation distributiv festgelegt.