Gruppentheorie/Links und Rechtsnebenklassen/Einführung/Textabschnitt
Es sei eine Gruppe und eine Untergruppe. Wir setzen (und sagen, dass und äquivalent sind) wenn .
Dies ist in der Tat eine Äquivalenzrelation: Aus folgt, dass diese Relation reflexiv ist. Aus folgt sofort und aus und folgt .
Es sei eine Gruppe und eine Untergruppe. Dann heißt zu jedem die Teilmenge
die Linksnebenklasse von in bezüglich . Jede Teilmenge von dieser Form heißt Linksnebenklasse. Entsprechend heißt eine Menge der Form
Rechtsnebenklasse (zu ).
Die Äquivalenzklassen zu der oben definierten Äquivalenzrelation sind wegen
genau die Linksnebenklassen. Die Linksnebenklassen bilden somit eine disjunkte Zerlegung (eine Partition) von . Dies gilt ebenso für die Rechtsnebenklassen. Im kommutativen Fall muss man nicht zwischen Links- und Rechtsnebenklassen unterscheiden.
Es sei eine Gruppe und eine Untergruppe. Es seien Elemente.
Dann sind folgende Aussagen äquivalent.
- .
- .
- .
- .
- .
- .
- .
Die Äquivalenz von und (und die von und ) folgt aus Multiplikation mit bzw. mit . Die Äquivalenz von und folgt durch Übergang zum Inversen. Aus folgt wegen . Wenn erfüllt ist, so bedeutet das mit gewissen . Damit ist und ist erfüllt. (4) und (6) sind nach Definition äquivalent. Da die Linksnebenklassen die Äquivalenzklassen sind, ergibt sich die Äquivalenz von (5) und (7).