Hilbertraum/Stetig lineare Abbildung/Gradient/Fakt/Beweis

Beweis

Bei der Nullabbildung ist zu nehmen, sei also nicht die Nullabbildung. Es sei mit und sei . Durch Multiplikation mit einem Skalar können wir davon ausgehen, dass eine positive reelle Zahl ist. Wegen der Stetigkeit und der Linearität ist ein abgeschlossener Untervektorraum von . Das orthogonale Komplement ist eindimensional: Zu gibt es mit , daher ist und wegen der Orthogonalität ist . Wir schreiben

mit und im Sinne von Fakt. Es ist . Wir setzen

dies sichert

Für mit der kanonischen Zerlegung

ist dann