Irrationale Zahl/Untergruppe/Kein Erzeuger/Kein minimales Element/Aufgabe/Lösung



a) Das Nullelement ergibt sich für , wegen

ist unter der Addition abgeschlossen und wegen

gehören auch die Negativen dazu.


b) Nehmen wir

mit einem an. Dann ist einerseits

mit gewissen und andererseits

mit einem , . Daraus folgt

Aus der Irrationalität von ergibt sich

also

Dann ist

also

Dann wäre

mit einem was wegen der Irrationalität von nicht möglich ist.


c) Nehmen wir an, es sei das minimale positive Element aus . Wir behaupten, dass dann

wäre, was nach Teil (2) nicht sein kann. Es sei also

positiv (bei negativ geht man zum Negativen davon über). Dann ist nach Voraussetzung

Wir betrachten bis wir zu einem mit

angelangen. Wegen muss

sein, also

.