Kurs:Algebraische Kurven (Osnabrück 2008)/Arbeitsblatt 29/latex




\inputaufgabe
{2}
{

Es sei
\mavergleichskette
{\vergleichskette
{P }
{ = }{ \left( a_0 , \, \ldots , \, a_n \right) }
{ \in }{ {\mathbb P}^{n}_{K} }
{ }{ }
{ }{ }
} {}{}{} ein Punkt im \definitionsverweis {projektiven Raum}{}{.} Zeige, dass es eine offene affine Umgebung
\mavergleichskette
{\vergleichskette
{U }
{ \cong }{ { {\mathbb A}_{ K }^{ n } } }
{ \subset }{ {\mathbb P}^{n}_{K} }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass $P$ in diesem affinen Raum dem Nullpunkt entspricht.

}
{} {}




\inputaufgabe
{3}
{

Es seien
\mathl{m+1}{} homogene Polynome
\mathl{F_0 , \ldots , F_m}{} in
\mathl{n+1}{} Variablen gegeben, die alle den gleichen Grad $d$ besitzen. Zeige, dass es eine offene Menge
\mathl{U \subseteq {\mathbb P}^{n}_{K}}{} gibt, auf der die Polynome einen Morphismus
\mathdisp {{\mathbb P}^{n}_{K} \supseteq U \longrightarrow {\mathbb P}^{m}_{K}} { }
definieren.

}
{} {}




\inputaufgabe
{2}
{

Definiere zu jedem
\mathl{n \in \Z}{} das Potenzieren
\mathl{x \mapsto x^n}{} als Morphismus der projektiven Gerade auf sich selbst. Wie sehen die Fasern unter diesem Morphismus aus?

}
{} {}




\inputaufgabe
{3}
{

Es sei
\mathl{P=(a_0 , \ldots , a_n) \in {\mathbb P}^{n}_{K}}{} ein Punkt im projektiven Raum. Zeige, dass die Projektion des ${\mathbb P}^{n}_{K}$ auf ${\mathbb P}^{n-1}_{K}$ mit Zentrum $P$ durch die Matrix
\mathdisp {} { }
gegeben ist, also durch die Abbildung
\mathdisp {\begin{pmatrix} x_0 \\x_1\\ \vdots\\x_n \end{pmatrix} \longmapsto \begin{pmatrix} x_0 \\x_1\\ \vdots\\x_n \end{pmatrix}} { . }

}
{} {}




\inputaufgabe
{2}
{

Es sei $K$ ein \definitionsverweis {algebraisch abgeschlossener Körper}{}{.} Zeige, dass eine \definitionsverweis {ebene projektive Kurve}{}{} mit jeder projektiven Geraden in der projektiven Ebene einen nichtleeren Durchschnitt hat.

}
{} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Tschirnhausen_cubic.png} }
\end{center}
\bildtext {Die Tschirnhausen Kubik} }

\bildlizenz { Tschirnhausen cubic.png } {} {} {Commons} {} {}





\inputaufgabe
{3}
{

Bestimme für die durch
\mathl{V { \left( X^3+3X^2-Y^2 \right) }}{} gegebene
\definitionswortenp{Tschirnhausen Kubik}{} die Singularitäten unter Berücksichtigung der unendlich fernen Punkte. Bestimme die Tangenten in den Singularitäten und in den unendlich fernen Punkten.

}
{} {}




\inputaufgabe
{3}
{

Bestimme für das durch
\mathl{V { \left( X^3+Y^3-3XY \right) }}{} definierte Kartesische Blatt die unendlich fernen Punkte in ${\mathbb P}^{2}_{{\mathbb C}}$ und berechne die Multiplizität und die Tangenten in diesen Punkten.

}
{} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Lemniscate_of_Bernoulli.svg} }
\end{center}
\bildtext {Die Lemniskate von Bernoulli} }

\bildlizenz { Lemniscate of Bernoulli.svg } {} {} {Commons} {} {}




\inputaufgabe
{3}
{

Bestimme für die durch
\mathl{V { \left( { \left( X^2+Y^2 \right) }^2-X^2+Y^2 \right) }}{} gegebene Lemniskate von Bernoulli die Singularitäten sowie die unendlich fernen Punkte in ${\mathbb P}^{2}_{{\mathbb C}}$. Berechne in all diesen Punkten die Multiplizität und die Tangenten.

}
{} {}




\inputaufgabe
{5}
{

Man gebe für die projektive Lemniskate von Bernoulli
\mavergleichskettedisp
{\vergleichskette
{ V_+ { \left( { \left( X^2+Y^2 \right) }^2-Z^2X^2+Z^2Y^2 \right) } }
{ \subset} { {\mathbb P}^{2}_{K} }
{ } { }
{ } { }
{ } { }
} {}{}{} einen surjektiven Morphismus auf eine projektive Quadrik an. Wie viele Punkte der Lemniskate werden dabei auf einen Punkt der Quadrik abgebildet?

}
{} {}




\inputaufgabe
{3}
{

Es sei $X$ eine irreduzible \definitionsverweis {quasiprojekive Varietät}{}{} mit Funktionenkörper
\mathl{L=K(X)}{.} Es seien $U$ und
\mathbed {U_i} {}
{i \in I} {}
{} {} {} {,} offene Teilmengen mit
\mathl{U=\bigcup_{i \in I} U_i}{.} Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ \Gamma (U, {\mathcal O} ) }
{ =} { \bigcap_{i \in I} \Gamma (U_i, {\mathcal O} ) }
{ } { }
{ } { }
{ } { }
} {}{}{} ist, wobei der Durchschnitt in $L$ genommen wird.

}
{} {}




\inputaufgabe
{3}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und ${\mathbb P}^{n}_{K}$ der \definitionsverweis {projektive Raum}{}{} über $K$. Zeige, dass die Konstanten die einzigen globalen \definitionsverweis {algebraischen Funktionen}{}{} sind, d.h. es gilt
\mavergleichskettedisp
{\vergleichskette
{ \Gamma { \left( {\mathbb P}^{n}_{K} , {\mathcal O}_{ {\mathbb P}^{n}_{K} } \right) } }
{ =} { K }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{Bemerkung: Diese Aussage gilt für jede zusammenhängende projektive Varietät über einem algebraisch abgeschlossenen Körper.} {}