Kurs:Algebraische Zahlentheorie (Osnabrück 2020-2021)/Arbeitsblatt 26/latex

\setcounter{section}{26}






\zwischenueberschrift{Aufgaben}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {Zahlbereich}{}{} und
\mavergleichskette
{\vergleichskette
{ {\mathfrak a} }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Ideal}{}{} in $R$. Zeige, dass es ein Element
\mavergleichskette
{\vergleichskette
{f }
{ \in }{ {\mathfrak a} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit der Eigenschaft gibt, dass für alle \definitionsverweis {maximale Ideale}{}{} ${\mathfrak m}$ gilt:
\mathdisp {f \in {\mathfrak m} \text{ genau dann, wenn } {\mathfrak a} \subseteq {\mathfrak m}} { . }

}
{} {}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {Zahlbereich}{}{} und
\mavergleichskette
{\vergleichskette
{ {\mathfrak a} }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Ideal}{}{} in $R$. Zeige, dass es eine natürliche Zahl
\mavergleichskette
{\vergleichskette
{m }
{ \in }{\N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass das \definitionsverweis {inverse Ideal}{}{}
\mathl{{\mathfrak a}^{-1}}{} zu
\mathl{{\mathfrak a}^m}{} äquivalent ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $R$ ein \definitionsverweis {Zahlbereich}{}{.} Zeige, dass es ein
\mathbed {f \in R} {}
{f \neq 0} {}
{} {} {} {,} mit der Eigenschaft gibt, dass die \definitionsverweis {Nenneraufnahme}{}{} $R_f$ \definitionsverweis {faktoriell}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{X }
{ = }{ \operatorname{Spek} { \left( R \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} das \definitionsverweis {Spektrum}{}{} eines \definitionsverweis {Zahlbereiches}{}{.} Zeige, dass jede \definitionsverweis {offene Menge}{}{} von $X$ von der Form $D(f)$ mit einem
\mavergleichskette
{\vergleichskette
{f }
{ \in }{R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige mit Korollar 26.11, dass der Ring der Gaußschen Zahlen $\Z[ { \mathrm i} ]$ \definitionsverweis {faktoriell}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ A_{13} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {quadratische Zahlbereich}{}{} zu
\mavergleichskette
{\vergleichskette
{ D }
{ = }{ 13 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige mittels Korollar 26.11, dass $R$ \definitionsverweis {faktoriell}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ A_{-43} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {quadratische Zahlbereich}{}{} zu
\mavergleichskette
{\vergleichskette
{ D }
{ = }{ - 43 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige mittels Korollar 26.11, dass $R$ \definitionsverweis {faktoriell}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ A_{-67} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {quadratische Zahlbereich}{}{} zu
\mavergleichskette
{\vergleichskette
{ D }
{ = }{ -67 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige mittels Korollar 26.11, dass $R$ \definitionsverweis {faktoriell}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $D$ quadratfrei und sei $A_D$ der zugehörige \definitionsverweis {quadratische Zahlbereich}{}{.} Ferner sei $D$ ein Vielfaches von $5$ und
\mavergleichskette
{\vergleichskette
{ D }
{ = }{ 2,3 \mod 4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige: $A_D$ ist nicht \definitionsverweis {faktoriell}{}{.}

}
{} {Tipp: Siehe Aufgabe 10.2.}




\inputaufgabe
{}
{

Zeige, dass der siebte \definitionsverweis {Kreisteilungsring}{}{} $R_7$ \definitionsverweis {faktoriell}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass der achte \definitionsverweis {Kreisteilungsring}{}{}
\mavergleichskette
{\vergleichskette
{R_8 }
{ = }{ \Z[X]/(X^4+1) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {faktoriell}{}{} ist.

}
{} {Bemerkung: Der Betrag der Diskriminante von $R_8$ ist $256$.}