Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 42/latex
\setcounter{section}{42}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabe
{}
{
Es sei $M$ eine
\definitionsverweis {quadratische}{}{}
$n \times n$-Matrix über ${\mathbb K}$. Es sei $\varphi_1$ eine
\definitionsverweis {Lösung}{}{}
der
\definitionsverweis {linearen Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ v'
}
{ =} { Mv +z_1(t)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mathl{\varphi_2}{} eine Lösung der
\definitionsverweis {linearen Differentialgleichung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ v'
}
{ =} { Mv +z_2(t)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Zeige, dass
\mathl{\varphi_1+ \varphi_2}{} eine Lösung der linearen Differentialgleichung
\mavergleichskettedisp
{\vergleichskette
{ v'
}
{ =} { Mv +z_1(t)+z_2(t)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{v'
}
{ =} {Mv
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein
\definitionsverweis {lineares Differentialgleichungssystem mit konstanten Koeffizienten}{}{,}
sei $L$ der Lösungsraum dieses Systems und sei
\mavergleichskette
{\vergleichskette
{t_0
}
{ \in }{\R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass die Abbildung
\maabbeledisp {} {L} { {\mathbb K}^n
} {\varphi} {\varphi(t_0)
} {,}
ein
\definitionsverweis {Vektorraum-Isomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Wie transformieren sich in Lemma 42.5 die Anfangsbedingungen?
}
{} {}
\inputaufgabegibtloesung
{}
{
Löse das
\definitionsverweis {lineare Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} v_1 \\v_2 \end{pmatrix}' = \begin{pmatrix} 3 & -4 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\v_2 \end{pmatrix} \text{ mit } \begin{pmatrix} v_1(0) \\v_2(0) \end{pmatrix} = \begin{pmatrix} 5 \\1 \end{pmatrix}} { . }
}
{} {}
\inputaufgabegibtloesung
{}
{
a) Bestimme den Lösungsraum des linearen Differentialgleichungssystems
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
b) Löse das Anfangswertproblem
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}'
}
{ =} { \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der Anfangsbedingung
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x(0) \\y(0) \end{pmatrix}
}
{ =} {\begin{pmatrix} 2 \\7 \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Löse das
\definitionsverweis {lineare Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} v_1 \\v_2 \end{pmatrix}' = \begin{pmatrix} 3 & 0 \\ 0 & -5 \end{pmatrix} \begin{pmatrix} v_1 \\v_2 \end{pmatrix} \text{ mit } \begin{pmatrix} v_1(0) \\v_2(0) \end{pmatrix} = \begin{pmatrix} 2 \\-11 \end{pmatrix}} { . }
}
{} {}
\inputaufgabegibtloesung
{}
{
a) Bestimme den Lösungsraum des linearen Differentialgleichungssystems
\mathdisp {\begin{pmatrix} x \\y \end{pmatrix}' = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}} { . }
b) Löse das Anfangswertproblem
\mathdisp {\begin{pmatrix} x \\y \end{pmatrix}' = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix}} { }
mit der Anfangsbedingung
\mathl{\begin{pmatrix} x(0) \\y(0) \end{pmatrix} =\begin{pmatrix} -4 \\3 \end{pmatrix}}{.}
}
{} {}
\inputaufgabe
{}
{
Finde für das zeitunabhängige
\definitionsverweis {Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} u \\v \end{pmatrix} '
}
{ =} { \begin{pmatrix} -v \\u \end{pmatrix}
}
{ =} { \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u \\v \end{pmatrix}
}
{ } {
}
{ } {
}
}
{}{}{}
Lösungen mit
\mathkor {} {u(0) =a} {und} {v(0) = b} {,}
wobei
\mavergleichskette
{\vergleichskette
{ a,b
}
{ \in }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
sind.
}
{} {}
\inputaufgabe
{}
{
Bestimme den
\definitionsverweis {Lösungsraum}{}{}
zum
\definitionsverweis {linearen Differentialgleichungssystem}{}{}
\mathdisp {\begin{pmatrix} v_1 \\v_2 \end{pmatrix}' = \begin{pmatrix} 1 & -3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\v_2 \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{}
{
Zeige, dass das
\definitionsverweis {charakteristische Polynom}{}{}
der sogenannten \stichwort {Begleitmatrix} {}
\mavergleichskettedisp
{\vergleichskette
{M
}
{ =} { \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \\ -a_0 & -a_1 & \ldots & -a_{n-2} & -a_{n-1} \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gleich
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M }
}
{ =} { X^n +a_{n-1}X^{n-1} + \cdots + a_1 X+a_0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $M$ die Menge aller beliebig oft differenzierbaren Funktionen von $\R$ nach $\R$ und $D$ die Ableitung, aufgefasst als Operator\zusatzfussnote {Eine Abbildung, die Funktionen in Funktionen überführt, nennt man häufig Operator} {.} {}
\maabbeledisp {D} {M} {M
} {f} {D(f) = f'
} {.}
Zu einem Polynom
\mathl{P \in \R[X]}{,}
\mathl{P=a_nX^n + \cdots + a_2X^2+ a_1 X +a_0}{,} betrachten wir den Operator
\maabbeledisp {P(D)} {M } {M
} {f} { (P(D))(f) = a_nD^n(f) + \cdots + a_2D^2(f) + a_1D (f) + a_0 f
} {.}
Berechne $(P(D))(f)$ für
\mathl{P=2X^3-4X^2+7X-3}{} und
\mathl{f=x^4, e^x, e^{2x}, \sin x}{.} Zeige, dass $P(D)$ eine lineare Abbildung auf $M$ ist.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mathl{\lambda \in \R}{} und
\mathl{n \in \N_+}{.} Zeige, dass der
Differentialoperator
\mathl{(D- \lambda)^n}{} die Funktionen
\mathl{x^j e^{\lambda x }}{} mit
\mathl{0 \leq j < n}{} auf die Nullfunktion abbildet.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{6}
{
Löse das
\definitionsverweis {lineare Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} v_1 \\v_2\\ v_3 \end{pmatrix}' = \begin{pmatrix} 2 & 3 & 2 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} v_1 \\v_2\\ v_3 \end{pmatrix} \text{ mit } \begin{pmatrix} v_1(0) \\v_2(0)\\ v_3(0) \end{pmatrix} = \begin{pmatrix} 1 \\0\\ -1 \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{4}
{
Löse das
\definitionsverweis {lineare Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} v_1 \\v_2 \end{pmatrix}' = \begin{pmatrix} 2 & 3 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} v_1 \\v_2 \end{pmatrix} \text{ mit } \begin{pmatrix} v_1(0) \\v_2(0) \end{pmatrix} = \begin{pmatrix} 5 \\-4 \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{5}
{
Bestimme den
\definitionsverweis {Lösungsraum}{}{}
zum
\definitionsverweis {linearen Differentialgleichungssystem}{}{}
\mathdisp {\begin{pmatrix} v_1 \\v_2\\ v_3\\v_4 \end{pmatrix}' = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} v_1 \\v_2\\ v_3\\v_4 \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{6}
{
Es sei
\mavergleichskette
{\vergleichskette
{ \lambda
}
{ \in }{ {\mathbb C}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Bestimme den
\definitionsverweis {Lösungsraum}{}{}
zum
\definitionsverweis {linearen Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} v_1 \\v_2\\ \vdots\\v_n \end{pmatrix}'
}
{ =} { \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix} \begin{pmatrix} v_1 \\v_2\\ \vdots\\v_n \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{5}
{
Bestimme die allgemeine Lösung des
\definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mathdisp {\begin{pmatrix} x \\y \end{pmatrix}' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} + \begin{pmatrix} t^2+e^t \\t \end{pmatrix}} { . }
}
{} {}
<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >> |
---|
}