Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Definitionsliste
Eine Verknüpfung auf einer Menge ist eine Abbildung
Ein Monoid ist eine Menge zusammen mit einer Verknüpfung
und einem ausgezeichneten Element derart, dass folgende beiden Bedingungen erfüllt sind.
- Die Verknüpfung ist assoziativ, d.h. es gilt
für alle .
- ist neutrales Element der Verknüpfung, d.h. es gilt
für alle .
Ein Monoid heißt Gruppe, wenn jedes Element ein inverses Element besitzt, d.h. wenn es zu jedem ein mit gibt.
Eine Gruppe heißt kommutativ (oder abelsch), wenn die Verknüpfung kommutativ ist, wenn also für alle gilt.
Zu einer endlichen Gruppe bezeichnet man die Anzahl ihrer Elemente als Gruppenordnung oder als die Ordnung der Gruppe, geschrieben
Es sei eine Gruppe und ein Element. Dann nennt man die kleinste positive Zahl mit die Ordnung von . Man schreibt hierfür . Wenn alle positiven Potenzen von vom neutralen Element verschieden sind, so setzt man .
Es sei eine Gruppe. Eine Teilmenge heißt Untergruppe von wenn folgendes gilt.
- .
- Mit ist auch .
- Mit ist auch .
Es sei eine Gruppe und eine Teilmenge. Dann nennt man
die von erzeugte Untergruppe.
Eine Gruppe heißt zyklisch, wenn sie von einem Element erzeugt wird.
Ein Ring ist eine Menge mit zwei Verknüpfungen und und mit zwei ausgezeichneten Elementen und derart, dass folgende Bedingungen erfüllt sind:
- ist eine abelsche Gruppe.
- ist ein Monoid.
- Es gelten die Distributivgesetze, also und für alle .
Ein Ring heißt kommutativ, wenn die Multiplikation kommutativ ist.
Es seien und natürliche Zahlen mit . Dann nennt man
den Binomialkoeffizienten „ über “.
Ein Element in einem kommutativen Ring heißt Nullteiler, wenn es ein von verschiedenes Element mit gibt. Andernfalls heißt es ein Nichtnullteiler.
Ein kommutativer, nullteilerfreier, von verschiedener Ring heißt Integritätsbereich.
Eine Teilmenge eines Ringes nennt man einen Unterring, wenn sowohl eine Untergruppe von als auch ein Untermonoid von ist.
Ein Element in einem Ring heißt Einheit, wenn es ein Element mit
gibt.
Die Einheitengruppe in einem Ring ist die Teilmenge aller Einheiten in . Sie wird mit bezeichnet.
Ein kommutativer Ring heißt Körper, wenn ist und wenn jedes von verschiedene Element ein multiplikatives Inverses besitzt.
Es sei ein Körper. Ein Unterring , der zugleich ein Körper ist, heißt Unterkörper von .
Es sei ein Körper und ein Unterkörper von . Dann heißt ein Erweiterungskörper (oder Oberkörper) von und die Inklusion heißt eine Körpererweiterung.
Die Menge mit und , mit der komponentenweisen Addition und der durch
definierten Multiplikation nennt man Körper der komplexen Zahlen. Er wird mit
bezeichnet.
Zu einer komplexen Zahl
heißt
der Realteil von und
heißt der Imaginärteil von .
Die Abbildung
heißt komplexe Konjugation.
Zu einer komplexen Zahl
ist der Betrag durch
definiert.
Der Polynomring über einem kommutativen Ring besteht aus allen Polynomen
und mit komponentenweiser Addition und einer Multiplikation, die durch distributive Fortsetzung der Regel
definiert ist.
Der Grad eines von verschiedenen Polynoms
mit ist .
Es sei ein Körper und seien . Eine Funktion
mit
heißt Polynomfunktion.
Ein euklidischer Bereich (oder euklidischer Ring) ist ein Integritätsbereich , für den eine Abbildung existiert, die die folgende Eigenschaft erfüllt:
Für Elemente mit gibt es mit
Es sei ein kommutativer Ring, und Elemente in . Man sagt, dass das Element teilt (oder dass von geteilt wird, oder dass ein Vielfaches von ist), wenn es ein derart gibt, dass ist. Man schreibt dafür auch .
Zwei Elemente und eines kommutativen Ringes heißen assoziiert, wenn es eine Einheit derart gibt, dass ist.
Eine Nichteinheit in einem kommutativen Ring heißt irreduzibel (oder unzerlegbar), wenn eine Faktorisierung nur dann möglich ist, wenn einer der Faktoren eine Einheit ist.
Eine Nichteinheit in einem kommutativen Ring heißt prim (oder ein Primelement), wenn folgendes gilt: Teilt ein Produkt mit , so teilt einen der Faktoren.