Kurs:Grundkurs Mathematik/Teil I/4/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 2 | 2 | 3 | 6 | 6 | 3 | 5 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 3 | 3 | 4 | 3 | 64 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (2 Punkte)Referenznummer erstellen
Auf wie viele Arten kann man mit den üblichen Münzen einen Betrag von Cent begleichen?
Aufgabe * (2 Punkte)Referenznummer erstellen
Anfang März beträgt die Zeitdifferenz zwischen Deutschland und Paraguay Stunden (in Paraguay wurde es Stunden später hell). Am 25. März 2018 wurde in Deutschland die Uhr von der Winterzeit auf die Sommerzeit umgestellt, die Uhr wurde also um eine Stunde nachts von auf vorgestellt. In der gleichen Nacht wurde die Uhr in Paraguay umgestellt. Wie groß war die Zeitdifferenz nach der Umstellung?
Aufgabe * (3 Punkte)Referenznummer erstellen
Es sei
eine surjektive Abbildung. Zeige, dass es eine Teilmenge derart gibt, dass man als Abbildung
auffassen kann ( und unterscheiden sich nur hinsichtlich des Definitionsbereiches) und dass bijektiv ist.
Aufgabe * (6 (2+1+3) Punkte)Referenznummer erstellen
Professor Knopfloch kommt gelegentlich mit verschiedenen Socken und/oder mit verschiedenen Schuhen in die Universität. Er legt folgende Definitionen fest.
- Ein Tag heißt sockenzerstreut, wenn er verschiedene Socken anhat.
- Ein Tag heißt schuhzerstreut, wenn er verschiedene Schuhe anhat.
- Ein Tag heißt zerstreut, wenn er sockenzerstreut oder schuhzerstreut ist.
- Ein Tag heißt total zerstreut, wenn er sowohl sockenzerstreut als auch schuhzerstreut ist.
a) Vom Jahr weiß man, dass Tage sockenzerstreut und Tage schuhzerstreut waren. Wie viele Tage waren in diesem Jahr maximal zerstreut und wie viele Tage waren minimal zerstreut? Wie viele Tage waren in diesem Jahr maximal total zerstreut und wie viele Tage waren minimal total zerstreut?
b) Vom Jahr weiß man, dass Tage sockenzerstreut und Tage schuhzerstreut waren. Wie viele Tage waren in diesem Jahr maximal zerstreut und wie viele Tage waren minimal total zerstreut?
c) Erstelle eine Formel, die die Anzahl der sockenzerstreuten, der schuhzerstreuten, der zerstreuten und der total zerstreuten Tage in einem Jahr miteinander in Verbindung bringt.
Aufgabe * (6 (1+1+1+2+1) Punkte)Referenznummer erstellen
Wir betrachten die durch die Wertetabelle
gegebene Abbildung von
in sich selbst.
- Erstelle eine Wertetabelle für .
- Erstelle eine Wertetabelle für .
- Begründe, dass sämtliche iterierten Hintereinanderschaltungen bijektiv sind.
- Bestimme für jedes
das minimale
mit der Eigenschaft, dass
ist.
- Bestimme das minimale
mit der Eigenschaft, dass
für alle ist.
Aufgabe * (3 Punkte)Referenznummer erstellen
Zeige durch vollständige Induktion, dass für jedes die Zahl
ein Vielfaches von ist.
Aufgabe * (5 Punkte)Referenznummer erstellen
Beweise die Existenz der Zifferndarstellung für natürliche Zahlen.
Aufgabe * (4 (2+2) Punkte)Referenznummer erstellen
Gabi Hochster möchte sich die Fingernägel ihrer linken Hand (ohne den Daumennagel) lackieren, wobei die drei Farben zur Verfügung stehen. Sie möchte nicht, dass zwei benachbarte Finger die gleiche Farbe bekommen.
- Wie viele Möglichkeiten gibt es, wenn sie nur zwei Farben verwendet?
- Wie viele Möglichkeiten gibt es, wenn sie alle drei Farben verwendet?
Aufgabe * (2 Punkte)Referenznummer erstellen
Erläutere die Division mit Rest für natürliche Zahlen anhand zweier Eimer (das Fassungsvermögen der beiden Eimer sei ein Vielfaches von einem Liter).
Aufgabe * (2 Punkte)Referenznummer erstellen
Aufgabe * (2 Punkte)Referenznummer erstellen
Es sei eine ganze Zahl, von der die folgenden Eigenschaften bekannt sind:
- ist negativ.
- ist ein Vielfaches von , aber nicht von .
- ist kein Vielfaches von .
- ist ein Vielfaches von , aber nicht von .
- In der Primfaktorzerlegung von gibt es keine Primzahl, die größer als ist.
Was ist ?
Aufgabe * (2 (1+1) Punkte)Referenznummer erstellen
Es seien natürliche Zahlen mit .
- Bestimme .
- Bestimme .
Aufgabe * (2 Punkte)Referenznummer erstellen
Ein Apfelverkäufer verkauft Äpfel für Euro. Ein zweiter Apfelverkäufer verkauft Äpfel für Euro. Welches Angebot ist günstiger?
Aufgabe * (4 Punkte)Referenznummer erstellen
Zeige, dass die Größergleichrelation auf mit der Addition und mit der Multiplikation verträglich ist.
Aufgabe * (3 Punkte)Referenznummer erstellen
Beweise den Satz über Wachstum und Injektivität für einen angeordneten Körper .
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (4 Punkte)Referenznummer erstellen
Zeige, dass eine rationale Zahl genau dann ein Dezimalbruch ist, wenn in der gekürzten Bruchdarstellung der Nenner die Form mit besitzt.
Aufgabe * (3 Punkte)Referenznummer erstellen
Berechne durch mit dem Divisionsalgorithmus.