Kurs:Grundkurs Mathematik/Teil I/6/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 2 | 3 | 2 | 2 | 5 | 2 | 7 | 5 | 8 | 2 | 4 | 3 | 6 | 2 | 3 | 2 | 64 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (2 Punkte)Referenznummer erstellen
Negiere den Satz „Kein Schwein ruft mich an und keine Sau interessiert sich für mich“ durch (eine) geeignete Existenzaussage(n).
Aufgabe (3 Punkte)Referenznummer erstellen
Erläutere Vor- und Nachteile des axiomatischen Aufbaus der Mathematik.
Aufgabe * (2 Punkte)Referenznummer erstellen
Es sei . Zeige, wie man mit vier Multiplikationen berechnen kann.
Aufgabe * (2 Punkte)Referenznummer erstellen
Es seien Mengen und
Abbildungen mit der Hintereinanderschaltung
Zeige: Wenn injektiv ist, so ist auch injektiv.
Aufgabe * (5 (2+2+1) Punkte)Referenznummer erstellen
- Zeige, dass für die Abschätzung
gilt und somit stets ist.
- Besitzt die Verknüpfung
ein neutrales Element?
- Berechne
Aufgabe * (2 Punkte)Referenznummer erstellen
Führe im Dreiersystem die Addition
schriftlich durch.
Aufgabe * (7 Punkte)Referenznummer erstellen
Beweise das allgemeine Distributivgesetz für einen kommutativen Halbring.
Aufgabe * (5 (1+1+3) Punkte)Referenznummer erstellen
Wir interessieren uns für Eigenschaften von ganzen Zahlen, die nur davon abhängen, ob eine positive () oder eine negative Zahl () vorliegt.
- Erstelle eine Verknüpfungstabelle für die Multiplikation auf , die die Multiplikation auf (hinsichtlich der Eigenschaft, ob das Ergebnis positiv oder negativ ist) widerspiegelt.
- Erstelle eine Verknüpfungstabelle für die Verknüpfung auf , die der Verknüpfung „Maximum nehmen“ auf (hinsichtlich der Eigenschaft, ob das Ergebnis positiv oder negativ ist) entspricht.
- Gibt es eine Beziehung zwischen diesen Verknüpfungen und den Verknüpfungen und auf , die das Verhalten von geraden und ungeraden Zahlen bei der Addition und der Multiplikation beschreiben?
Aufgabe * (8 (1+1+1+3+2) Punkte)Referenznummer erstellen
Zur großen Pause fährt der Eiswagen „Largo Maggiore“ auf den Pausenhof. Eisverkäufer Lorenzo di Napoli bietet Eissorten an. Lucy Sonnenschein hat heute Lust auf ein Eis mit drei Kugeln, die in der Eistüte übereinander gestapelt werden.
- Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Lucy drei verschiedene Sorten möchte und die Schleckreihenfolge mitberücksichtigt wird?
- Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Lucy drei verschiedene Sorten möchte und die Schleckreihenfolge nicht mitberücksichtigt wird?
- Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Sorten mehrfach auftreten dürfen und die Schleckreihenfolge mitberücksichtigt wird?
- Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Sorten mehrfach auftreten dürfen und die Schleckreihenfolge nicht mitberücksichtigt wird?
- Wie kann man mit den Schritten mit denen man (4) beantwortet hat die Antworten zu (1) und zu (3) herleiten?
Aufgabe * (2 Punkte)Referenznummer erstellen
Finde zwei natürliche Zahlen, deren Summe und deren Produkt ist.
Aufgabe * (4 Punkte)Referenznummer erstellen
Es sei . Woran erkennt man am Kleinen Einmaleins im -System (ohne die Nuller- und die Zehnerreihe), ob eine Primzahl ist.
Aufgabe * (3 Punkte)Referenznummer erstellen
Zeige, dass eine Quadratzahl stets eine ungerade Anzahl an Teilern besitzt.
Aufgabe * (6 (2+3+1) Punkte)Referenznummer erstellen
Ein Metallarbeiter hat zwei Metallstäbe zur Verfügung. Wenn er den kleinen siebenmal hintereinanderlegt, erhält er genau drei Meter. Wenn er den großen achtmal hintereinanderlegt, erhält er genau fünf Meter.
- Wie kann er allein mit diesen Stäben eine Länge von einem Meter bestimmen?
- Was ist die kleinste positive Strecke, die er mit den Stäben messen kann?
- Welche Streckenlängen kann er mit seinen beiden Metallstäben messen?
Aufgabe * (2 Punkte)Referenznummer erstellen
Bestimme, welche der beiden rationalen Zahlen und größer ist.
Aufgabe * (3 Punkte)Referenznummer erstellen
Es sei ein angeordneter Körper. Zeige, ausgehend von den Axiomen für einen angeordneten Körper, dass gilt.
Aufgabe * (2 Punkte)Referenznummer erstellen
Es seien Basen zu einem Stellenwertsystem (-er System und -er System). Es sei eine rationale Zahl, die im Stellenwertsystem zur Basis eine abbrechende Darstellung als Kommazahl besitzt. Gilt dies dann auch im Stellenwertsystem zur Basis ?