Kurs:Grundkurs Mathematik/Teil I/6/Klausur mit Lösungen/latex

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 3 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 5 }

\renewcommand{\aacht}{ 2 }

\renewcommand{\aneun}{ 7 }

\renewcommand{\azehn}{ 5 }

\renewcommand{\aelf}{ 8 }

\renewcommand{\azwoelf}{ 2 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 6 }

\renewcommand{\asechzehn}{ 2 }

\renewcommand{\asiebzehn}{ 3 }

\renewcommand{\aachtzehn}{ 2 }

\renewcommand{\aneunzehn}{ 64 }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleachtzehn


\klausurnote

\newpage


\setcounter{section}{0}





\inputaufgabepunkteloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {endliche} {} Menge $M$ mit $n$ Elementen.

}{Eine \stichwort {Relation} {} auf einer Menge $M$.

}{Die \stichwort {Multiplikation} {} von ganzen Zahlen.

}{Ein \stichwort {gemeinsames Vielfaches} {} zu natürlichen Zahlen $a_1 , \ldots , a_k$.

}{Die \stichwort {Größergleichrelation} {} $\geq$ auf den rationalen Zahlen.

}{Die \stichwort {Darstellung} {} eines Dezimalbruches im Dezimalsystem. }

}
{

\aufzaehlungsechs{Eine Menge $M$ heißt endlich mit $n$ Elementen, wenn es eine \definitionsverweis {Bijektion}{}{} \maabbdisp {} {{ \{ 1 , \ldots , n \} } } {M} {} gibt. }{Eine Relation $R$ auf einer Menge $M$ ist eine Teilmenge der Produktmenge
\mathl{M \times M}{,} also
\mavergleichskette
{\vergleichskette
{ R }
{ \subseteq }{ M \times M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Die ganzen Zahlen haben die Form
\mathl{\pm a}{} und
\mathl{\pm b}{} mit natürlichen Zahlen $a,b$. Die Multiplikation wird folgendermaßen definiert.
\mavergleichskettedisp
{\vergleichskette
{a \cdot b }
{ \defeq} { a \cdot b }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{a \cdot (-b) }
{ \defeq} { - (a \cdot b) }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{(-a) \cdot b }
{ \defeq} { - (a \cdot b) }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{(-a) \cdot (-b) }
{ \defeq} { a \cdot b }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{Die natürliche Zahl $b$ heißt ein gemeinsames Vielfaches der
\mathl{a_1 , \ldots , a_k}{,} wenn $b$ ein \definitionsverweis {Vielfaches}{}{} von jedem $a_i$ ist, also von jedem $a_i$ \definitionsverweis {geteilt}{}{} wird. }{Auf den \definitionsverweis {rationalen Zahlen}{}{} $\Q$ wird die \stichwort {Größergleichrelation} {} $\geq$ durch
\mavergleichskette
{\vergleichskette
{ { \frac{ a }{ b } } }
{ \geq }{ { \frac{ c }{ d } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {bei positiven Nennern \mathlk{b,d \in \N_+}{}} {} {,} falls
\mavergleichskette
{\vergleichskette
{ ad }
{ \geq }{cb }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in $\Z$ gilt, definiert. }{Es sei ein \definitionsverweis {Dezimalbruch}{}{}
\mathdisp {{ \frac{ a }{ 10^k } }} { }
mit
\mathbed {a= \pm b \in \Z} {}
{b \in \N} {}
{} {} {} {,} und $k \in \N$ gegeben, und es sei
\mavergleichskettedisp
{\vergleichskette
{b }
{ =} { \sum_{i = 0}^n b_i 10^{i} }
{ =} {b_{n} \cdots b_1 b_0 }
{ } { }
{ } { }
} {}{}{} die Dezimaldarstellung von $b$. Dann nennt man
\mathdisp {\pm b_{n} \cdots b_{k} , b_{k-1 } \cdots b_1 b_0} { }
die Darstellung des Dezimalbruches im Dezimalsystem. }


}





\inputaufgabepunkteloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Beziehung zwischen der Addition und endlichen Mengen.}{Die \stichwort {Potenzgesetze} {} für natürliche Zahlen.}{Der Satz über die algebraische Struktur der ganzen Zahlen.}

}
{

\aufzaehlungdrei{Es seien \mathkor {} {M} {und} {N} {} disjunkte endliche Mengen mit \mathkor {} {m} {bzw.} {n} {} Elementen. Dann besitzt ihre Vereinigung
\mathl{M \cup N}{} gerade
\mathl{m+n}{} Elemente.}{Für das Potenzieren gelten die folgenden Eigenschaften, wobei
\mathl{a,b \in \N_+}{} und
\mathl{m,n \in \N}{} seien. \aufzaehlungdrei{
\mavergleichskettedisp
{\vergleichskette
{a^{m+n} }
{ =} { a^m \cdot a^n }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{(a^{m})^n }
{ =} { a^{m n } }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{(a\cdot b)^n }
{ =} { a^n \cdot b^n }
{ } { }
{ } { }
{ } { }
} {}{}{.} }}{Die ganzen Zahlen
\mathl{(\Z,0,1,+,\cdot)}{} bilden einen kommutativen Ring.}


}





\inputaufgabepunkteloesung
{2}
{

Negiere den Satz \anfuehrung{Kein Schwein ruft mich an und keine Sau interessiert sich für mich}{} durch (eine) geeignete Existenzaussage(n).

}
{

Es gibt ein Schwein, das mich anruft, oder es gibt eine Sau, die sich für mich interessiert.


}





\inputaufgabepunkteloesung
{3}
{

Erläutere Vor- und Nachteile des axiomatischen Aufbaus der Mathematik.

}
{Axiomatischer Aufbau/Vor- und Nachteile/Aufgabe/Lösung }





\inputaufgabepunkteloesung
{2}
{

Es sei
\mathl{a \in \N_+}{.} Zeige, wie man $a^{10}$ mit vier Multiplikationen berechnen kann.

}
{

Sei
\mavergleichskettedisp
{\vergleichskette
{b }
{ \defeq} { a \cdot a }
{ =} {a^2 }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{c }
{ \defeq} { b \cdot b }
{ =} {b^2 }
{ =} {a^4 }
{ } { }
} {}{}{.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{a^{10} }
{ =} {(c \cdot c) \cdot b }
{ } { }
{ } { }
{ } { }
} {}{}{} eine Berechnung mit vier Multiplikationen.


}





\inputaufgabepunkteloesung
{2}
{

Es seien $L,M,N$ Mengen und
\mathdisp {f:L \longrightarrow M \text{ und } g:M \longrightarrow N} { }
\definitionsverweis {Abbildungen}{}{} mit der \definitionsverweis {Hintereinanderschaltung}{}{} \maabbeledisp {g \circ f} {L} {N } {x} {g(f(x)) } {.} Zeige: Wenn $g \circ f$ \definitionsverweis {injektiv}{}{} ist, so ist auch $f$ injektiv.

}
{

Es seien
\mavergleichskette
{\vergleichskette
{ x_1,x_2 }
{ \in }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben mit
\mavergleichskette
{\vergleichskette
{ f(x_1) }
{ = }{ f(x_2) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Wir müssen zeigen, dass
\mavergleichskette
{\vergleichskette
{ x_1 }
{ = }{ x_2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Es ist
\mavergleichskettedisp
{\vergleichskette
{(g \circ f) (x_1) }
{ =} {g( f(x_1)) }
{ =} {g( f(x_2)) }
{ =} {(g \circ f) (x_2) }
{ } { }
} {}{}{.} Da nach Voraussetzung
\mathl{g \circ f}{} injektiv ist, folgt
\mavergleichskette
{\vergleichskette
{ x_1 }
{ = }{ x_2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wie gewünscht.


}





\inputaufgabepunkteloesung
{5 (2+2+1)}
{

\aufzaehlungdrei{Zeige, dass für
\mathl{a,b \in \N}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ab }
{ \leq} {a^2+b^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt und somit stets
\mathl{a^2+b^2 -ab \in \N}{} ist. }{Besitzt die Verknüpfung \maabbeledisp {} {\N \times \N} { \N } {(a,b)} {a \star b \defeq a^2+b^2 -ab } {,} ein neutrales Element? }{Berechne
\mathdisp {5 \star (4 \star 3)} { . }
}

}
{

\aufzaehlungdrei{Da die natürlichen Zahlen total geordnet sind, ist
\mavergleichskettedisp
{\vergleichskette
{a }
{ \geq} {b }
{ } { }
{ } { }
{ } { }
} {}{}{} oder
\mavergleichskettedisp
{\vergleichskette
{b }
{ \geq} {a }
{ } { }
{ } { }
{ } { }
} {}{}{.} Im ersten Fall ist dann auch
\mavergleichskettedisp
{\vergleichskette
{ a^2 }
{ =} { a \cdot a }
{ \geq} { a \cdot b }
{ } { }
{ } { }
} {}{}{} nach Satz 10.8 (Grundkurs Mathematik (Osnabrück 2022-2023))  (3) und somit erst recht
\mavergleichskettedisp
{\vergleichskette
{ a^2 +b^2 }
{ \geq} {a \cdot b }
{ } { }
{ } { }
{ } { }
} {}{}{.} Diese Abschätzung ergibt sich im anderen Fall genauso. }{Wir betrachten die Bedingung
\mavergleichskettedisp
{\vergleichskette
{ e \star x }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mathl{x \in \N}{,} die für ein neutrales Element $e$ gelten muss. Dies muss insbesondere auch für $x=0$ gelten, was auf
\mavergleichskettedisp
{\vergleichskette
{ 0 }
{ =} { e \star 0 }
{ =} { e^2-0+0 }
{ =} { e^2 }
{ } { }
} {}{}{} führt. Der einzige Kandidat ist also
\mavergleichskette
{\vergleichskette
{e }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Allerdings ist
\mavergleichskettedisp
{\vergleichskette
{ e \star 2 }
{ =} { 0 \star 2 }
{ =} { 2^2 }
{ =} { 4 }
{ } { }
} {}{}{} und somit ist $0$ nicht das neutrale Element. Es gibt also kein neutrales Element. }{Es ist
\mavergleichskettedisp
{\vergleichskette
{ 5 \star (4 \star 3) }
{ =} { 5 \star (16 +9 -12) }
{ =} { 5 \star 13 }
{ =} { 25 +169-65 }
{ =} { 129 }
} {}{}{.} }


}





\inputaufgabepunkteloesung
{2}
{

Führe im Dreiersystem die Addition
\mathdisp {201 021 + 112 002} { }
schriftlich durch.

}
{

Es ist
\mathdisp {\, \, \, \, \, 201 021} { }

\mathdisp {+ 112 002} { }

\mathdisp {\underline{\, \, 1 \, \, \, 1\,\,\, 1 1 \, \, \, \, }} { }

\mathdisp {\, \, 1020100} { . }


}





\inputaufgabepunkteloesung
{7}
{

Beweise das \stichwort {allgemeine Distributivgesetz} {} für einen kommutativen Halbring.

}
{

Wir machen eine Doppelinduktion nach $r$ und nach $s$. D.h. wir beweisen die Aussage für jedes feste $r$ durch Induktion nach $s$ \zusatzklammer {innere Induktion} {} {} und erhöhen dann in einem eigenen Induktionsdurchgang $r$ \zusatzklammer {äußere Induktion} {} {.} Bei
\mavergleichskette
{\vergleichskette
{r }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist nichts zu zeigen, da dann die Summen links und rechts leer sind, also gleich $0$. Es sei also
\mavergleichskette
{\vergleichskette
{r }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} so dass der linke Faktor einfach eine fixierte Zahl
\mavergleichskette
{\vergleichskette
{a }
{ = }{a_1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. Wir wollen die Aussage in dieser Situation für beliebiges $s$ zeigen. Bei
\mavergleichskette
{\vergleichskette
{s }
{ = }{ 0, 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist die Aussage klar. Es sei die Aussage nun für ein
\mavergleichskettedisp
{\vergleichskette
{s }
{ \geq} {2 }
{ } { }
{ } { }
{ } { }
} {}{}{} schon bewiesen. Dann ist
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ a \cdot { \left( b_1 + \cdots + b_s + b_{s+1} \right) } }
{ =} { a \cdot { \left( { \left( b_1 + \cdots + b_s \right) } + b_{s+1} \right) } }
{ =} { a \cdot { \left( b_1 + \cdots + b_s \right) } + a b_{s+1} }
{ =} { { \left( \sum_{k = 1}^s ab_k \right) } + ab_{s+1} }
{ =} { \sum_{k = 1}^{s+1} ab_k }
} {} {}{} nach dem Distributivgesetz und der Induktionsvoraussetzung.

Es sei die Aussage nun für ein festes $r$ und jedes $s$ bewiesen. Dann ist wieder mit dem Distributivgesetz und der Induktionsvoraussetzung
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ { \left( \sum_{i = 1}^{r+1} a_i \right) } \cdot { \left( \sum_{k = 1}^s b_k \right) } }
{ =} { { \left( { \left( \sum_{i = 1}^{r} a_i \right) } +a_{r+1} \right) } \cdot { \left( \sum_{k = 1}^s b_k \right) } }
{ =} { { \left( \sum_{i = 1}^{r} a_i \right) } \cdot { \left( \sum_{k = 1}^s b_k \right) } +a_{r+1} \cdot { \left( \sum_{k = 1}^s b_k \right) } }
{ =} { \sum_{ 1 \leq i \leq r,\, 1 \leq k \leq s } a_ib_k + \sum_{k = 1}^s a_{r+1} b_k }
{ =} { \sum_{ 1 \leq i \leq r+1,\, 1 \leq k \leq s } a_ib_k }
} {} {}{.}


}





\inputaufgabepunkteloesung
{5 (1+1+3)}
{

Wir interessieren uns für Eigenschaften von ganzen Zahlen, die nur davon abhängen, ob eine positive \zusatzklammer {$p$} {} {} oder eine negative Zahl \zusatzklammer {$n$} {} {} vorliegt. \aufzaehlungdrei{Erstelle eine Verknüpfungstabelle für die Multiplikation auf
\mathl{\{ p, n\}}{,} die die Multiplikation auf $\Z$ \zusatzklammer {hinsichtlich der Eigenschaft, ob das Ergebnis positiv oder negativ ist} {} {} widerspiegelt. }{Erstelle eine Verknüpfungstabelle für die Verknüpfung auf
\mathl{\{ p, n\}}{,} die der Verknüpfung \anfuehrung{Maximum nehmen}{} auf $\Z$ \zusatzklammer {hinsichtlich der Eigenschaft, ob das Ergebnis positiv oder negativ ist} {} {} entspricht. }{Gibt es eine Beziehung zwischen diesen Verknüpfungen und den Verknüpfungen $\cdot$ und $+$ auf
\mathl{\{g,u\}}{,} die das Verhalten von geraden und ungeraden Zahlen bei der Addition und der Multiplikation beschreiben? }

}
{

\aufzaehlungdrei{%Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\cdot$ }

\renewcommand{\leitzeileeins}{ $p$ }

\renewcommand{\leitzeilezwei}{ $n$ }

\renewcommand{\leitzeiledrei}{ }

\renewcommand{\leitzeilevier}{ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $p$ }

\renewcommand{\leitspaltezwei}{ $n$ }

\renewcommand{\leitspaltedrei}{ }

\renewcommand{\leitspaltevier}{ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ p }

\renewcommand{\aeinsxzwei}{ n }

\renewcommand{\aeinsxdrei}{ }

\renewcommand{\aeinsxvier}{ }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ n }

\renewcommand{\azweixzwei}{ p }

\renewcommand{\azweixdrei}{ }

\renewcommand{\azweixvier}{ }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ }

\renewcommand{\adreixzwei}{ }

\renewcommand{\adreixdrei}{ }

\renewcommand{\adreixvier}{ }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ }

\renewcommand{\avierxzwei}{ }

\renewcommand{\avierxdrei}{ }

\renewcommand{\avierxvier}{ }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }



\renewcommand{\asiebzehnxeins}{ }

\renewcommand{\asiebzehnxzwei}{ }

\renewcommand{\asiebzehnxdrei}{ }

\renewcommand{\asiebzehnxvier}{ }

\renewcommand{\asiebzehnxfuenf}{ }

\renewcommand{\asiebzehnxsechs}{ }

\renewcommand{\asiebzehnxsieben}{ }

\renewcommand{\asiebzehnxacht}{ }

\renewcommand{\asiebzehnxneun}{ }

\renewcommand{\asiebzehnxzehn}{ }

\renewcommand{\asiebzehnxelf}{ }

\renewcommand{\asiebzehnxzwoelf}{ }





\renewcommand{\aachtzehnxeins}{ }

\renewcommand{\aachtzehnxzwei}{ }

\renewcommand{\aachtzehnxdrei}{ }

\renewcommand{\aachtzehnxvier}{ }

\renewcommand{\aachtzehnxfuenf}{ }

\renewcommand{\aachtzehnxsechs}{ }

\renewcommand{\aachtzehnxsieben}{ }

\renewcommand{\aachtzehnxacht}{ }

\renewcommand{\aachtzehnxneun}{ }

\renewcommand{\aachtzehnxzehn}{ }

\renewcommand{\aachtzehnxelf}{ }

\renewcommand{\aachtzehnxzwoelf}{ }


\tabelleleitzweixzwei

}{%Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\operatorname{max}$ }

\renewcommand{\leitzeileeins}{ $p$ }

\renewcommand{\leitzeilezwei}{ $n$ }

\renewcommand{\leitzeiledrei}{ }

\renewcommand{\leitzeilevier}{ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $p$ }

\renewcommand{\leitspaltezwei}{ $n$ }

\renewcommand{\leitspaltedrei}{ }

\renewcommand{\leitspaltevier}{ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ p }

\renewcommand{\aeinsxzwei}{ p }

\renewcommand{\aeinsxdrei}{ }

\renewcommand{\aeinsxvier}{ }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ p }

\renewcommand{\azweixzwei}{ n }

\renewcommand{\azweixdrei}{ }

\renewcommand{\azweixvier}{ }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ }

\renewcommand{\adreixzwei}{ }

\renewcommand{\adreixdrei}{ }

\renewcommand{\adreixvier}{ }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ }

\renewcommand{\avierxzwei}{ }

\renewcommand{\avierxdrei}{ }

\renewcommand{\avierxvier}{ }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }



\renewcommand{\asiebzehnxeins}{ }

\renewcommand{\asiebzehnxzwei}{ }

\renewcommand{\asiebzehnxdrei}{ }

\renewcommand{\asiebzehnxvier}{ }

\renewcommand{\asiebzehnxfuenf}{ }

\renewcommand{\asiebzehnxsechs}{ }

\renewcommand{\asiebzehnxsieben}{ }

\renewcommand{\asiebzehnxacht}{ }

\renewcommand{\asiebzehnxneun}{ }

\renewcommand{\asiebzehnxzehn}{ }

\renewcommand{\asiebzehnxelf}{ }

\renewcommand{\asiebzehnxzwoelf}{ }





\renewcommand{\aachtzehnxeins}{ }

\renewcommand{\aachtzehnxzwei}{ }

\renewcommand{\aachtzehnxdrei}{ }

\renewcommand{\aachtzehnxvier}{ }

\renewcommand{\aachtzehnxfuenf}{ }

\renewcommand{\aachtzehnxsechs}{ }

\renewcommand{\aachtzehnxsieben}{ }

\renewcommand{\aachtzehnxacht}{ }

\renewcommand{\aachtzehnxneun}{ }

\renewcommand{\aachtzehnxzehn}{ }

\renewcommand{\aachtzehnxelf}{ }

\renewcommand{\aachtzehnxzwoelf}{ }


\tabelleleitzweixzwei

}{Die Verknüpfungstabellen für \mathkor {} {+} {und} {\cdot} {} auf
\mathl{\{g,u\}}{} sind %Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $+$ }

\renewcommand{\leitzeileeins}{ $g$ }

\renewcommand{\leitzeilezwei}{ $u$ }

\renewcommand{\leitzeiledrei}{ }

\renewcommand{\leitzeilevier}{ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $g$ }

\renewcommand{\leitspaltezwei}{ $u$ }

\renewcommand{\leitspaltedrei}{ }

\renewcommand{\leitspaltevier}{ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ g }

\renewcommand{\aeinsxzwei}{ u }

\renewcommand{\aeinsxdrei}{ }

\renewcommand{\aeinsxvier}{ }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ u }

\renewcommand{\azweixzwei}{ g }

\renewcommand{\azweixdrei}{ }

\renewcommand{\azweixvier}{ }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ }

\renewcommand{\adreixzwei}{ }

\renewcommand{\adreixdrei}{ }

\renewcommand{\adreixvier}{ }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ }

\renewcommand{\avierxzwei}{ }

\renewcommand{\avierxdrei}{ }

\renewcommand{\avierxvier}{ }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }



\renewcommand{\asiebzehnxeins}{ }

\renewcommand{\asiebzehnxzwei}{ }

\renewcommand{\asiebzehnxdrei}{ }

\renewcommand{\asiebzehnxvier}{ }

\renewcommand{\asiebzehnxfuenf}{ }

\renewcommand{\asiebzehnxsechs}{ }

\renewcommand{\asiebzehnxsieben}{ }

\renewcommand{\asiebzehnxacht}{ }

\renewcommand{\asiebzehnxneun}{ }

\renewcommand{\asiebzehnxzehn}{ }

\renewcommand{\asiebzehnxelf}{ }

\renewcommand{\asiebzehnxzwoelf}{ }





\renewcommand{\aachtzehnxeins}{ }

\renewcommand{\aachtzehnxzwei}{ }

\renewcommand{\aachtzehnxdrei}{ }

\renewcommand{\aachtzehnxvier}{ }

\renewcommand{\aachtzehnxfuenf}{ }

\renewcommand{\aachtzehnxsechs}{ }

\renewcommand{\aachtzehnxsieben}{ }

\renewcommand{\aachtzehnxacht}{ }

\renewcommand{\aachtzehnxneun}{ }

\renewcommand{\aachtzehnxzehn}{ }

\renewcommand{\aachtzehnxelf}{ }

\renewcommand{\aachtzehnxzwoelf}{ }


\tabelleleitzweixzwei

und %Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\cdot$ }

\renewcommand{\leitzeileeins}{ $g$ }

\renewcommand{\leitzeilezwei}{ $u$ }

\renewcommand{\leitzeiledrei}{ }

\renewcommand{\leitzeilevier}{ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $g$ }

\renewcommand{\leitspaltezwei}{ $u$ }

\renewcommand{\leitspaltedrei}{ }

\renewcommand{\leitspaltevier}{ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ g }

\renewcommand{\aeinsxzwei}{ g }

\renewcommand{\aeinsxdrei}{ }

\renewcommand{\aeinsxvier}{ }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ g }

\renewcommand{\azweixzwei}{ u }

\renewcommand{\azweixdrei}{ }

\renewcommand{\azweixvier}{ }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ }

\renewcommand{\adreixzwei}{ }

\renewcommand{\adreixdrei}{ }

\renewcommand{\adreixvier}{ }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ }

\renewcommand{\avierxzwei}{ }

\renewcommand{\avierxdrei}{ }

\renewcommand{\avierxvier}{ }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }



\renewcommand{\asiebzehnxeins}{ }

\renewcommand{\asiebzehnxzwei}{ }

\renewcommand{\asiebzehnxdrei}{ }

\renewcommand{\asiebzehnxvier}{ }

\renewcommand{\asiebzehnxfuenf}{ }

\renewcommand{\asiebzehnxsechs}{ }

\renewcommand{\asiebzehnxsieben}{ }

\renewcommand{\asiebzehnxacht}{ }

\renewcommand{\asiebzehnxneun}{ }

\renewcommand{\asiebzehnxzehn}{ }

\renewcommand{\asiebzehnxelf}{ }

\renewcommand{\asiebzehnxzwoelf}{ }





\renewcommand{\aachtzehnxeins}{ }

\renewcommand{\aachtzehnxzwei}{ }

\renewcommand{\aachtzehnxdrei}{ }

\renewcommand{\aachtzehnxvier}{ }

\renewcommand{\aachtzehnxfuenf}{ }

\renewcommand{\aachtzehnxsechs}{ }

\renewcommand{\aachtzehnxsieben}{ }

\renewcommand{\aachtzehnxacht}{ }

\renewcommand{\aachtzehnxneun}{ }

\renewcommand{\aachtzehnxzehn}{ }

\renewcommand{\aachtzehnxelf}{ }

\renewcommand{\aachtzehnxzwoelf}{ }


\tabelleleitzweixzwei

Man erkennt, dass wenn man $p$ mit $g$ und $n$ mit $u$ identifiziert, dass dann die obere Multiplikation der unteren Addition und das Maximumnehmen der unteren Multiplikation entspricht. }


}





\inputaufgabepunkteloesung
{8 (1+1+1+3+2)}
{

Zur großen Pause fährt der Eiswagen \anfuehrung{Largo Maggiore}{} auf den Pausenhof. Eisverkäufer Lorenzo di Napoli bietet $10$ Eissorten an. Lucy Sonnenschein hat heute Lust auf ein Eis mit drei Kugeln, die in der Eistüte übereinander gestapelt werden. \aufzaehlungfuenf{Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Lucy drei verschiedene Sorten möchte und die Schleckreihenfolge mitberücksichtigt wird? }{Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Lucy drei verschiedene Sorten möchte und die Schleckreihenfolge nicht mitberücksichtigt wird? }{Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Sorten mehrfach auftreten dürfen und die Schleckreihenfolge mitberücksichtigt wird? }{Wie viele Möglichkeiten gibt es für diesen Eiskauf, wenn Sorten mehrfach auftreten dürfen und die Schleckreihenfolge nicht mitberücksichtigt wird? }{Wie kann man mit den Schritten mit denen man (4) beantwortet hat die Antworten zu (1) und zu (3) herleiten? }

}
{

\aufzaehlungfuenf{Es gibt
\mathl{10 \cdot 9 \cdot 8 = 720}{} Möglichkeiten, da es für die erste Kugel $10$, für die nächste $9$, da diese von einer anderen Sorte als die erste sein muss, und für die dritte $8$ Möglichkeiten. }{Es geht um die Anzahl der dreielementigen Teilmengen aus der zehnelementigen Eissortenmenge, also gibt es
\mavergleichskettedisp
{\vergleichskette
{ \binom { 10 } { 3 } }
{ =} { { \frac{ 10 \cdot 9 \cdot 8 }{ 3 \cdot 2 \cdot 1 } } }
{ =} { 120 }
{ } { }
{ } { }
} {}{}{} Möglichkeiten. }{Für jede Kugel gibt es zehn Möglichkeiten, die Gesamtzahl ist also
\mavergleichskettedisp
{\vergleichskette
{10^3 }
{ =} {1000 }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{Wenn sie drei verschiedene Kugeln kauft, so sind das, wie unter (2) berechnet,
\mathl{120}{} Möglichkeiten. Wenn sie zwei verschiedene Kugeln kauft, so gibt es für die Auswahl der Sorten
\mavergleichskettedisp
{\vergleichskette
{ \binom { 10 } { 2 } }
{ =} { { \frac{ 10 \cdot 9 }{ 2 \cdot 1 } } }
{ =} { 45 }
{ } { }
{ } { }
} {}{}{} Möglichkeiten. Sodann muss man dabei aber noch festlegen, welche Sorte einmal und welche zweimal genommen wird. Daher gibt es hier
\mathl{90}{} Möglichkeiten. Wenn sie von einer Sorte drei Kugeln kauft, so gibt es dafür $10$ Möglichkeiten. Insgesamt gibt es also
\mavergleichskettedisp
{\vergleichskette
{120 +90 +10 }
{ =} {220 }
{ } { }
{ } { }
{ } { }
} {}{}{} Möglichkeiten. }{Für die
\mathl{120}{} Möglichkeiten aus dem ersten Typ von (4) gibt es jeweils sechs Möglichkeiten, in welcher Reihenfolge sie aufgetürmt werden können, das macht die
\mathl{720}{} aus Teil (1). Für die
\mathl{90}{} Möglichkeiten aus dem zweiten Typ von (4) gibt es jeweils drei Möglichkeiten, in welcher Reihenfolge sie aufgetürmt werden können \zusatzklammer {an welcher Stelle kommen die einzelnen Kugeln} {?} {,} das macht
\mathl{270}{} Möglichkeiten. Für den dritten Typ aus (4) ist die Reihenfolge unerheblich, es bleibt also bei den $10$ Möglichkeiten. Insgesamt ergeben sich so gerechnet
\mavergleichskettedisp
{\vergleichskette
{720 +270+10 }
{ =} {1000 }
{ } { }
{ } { }
{ } { }
} {}{}{,} was dem Ergebnis aus Teil (3) entspricht. }


}





\inputaufgabepunkteloesung
{2}
{

Finde zwei natürliche Zahlen, deren Summe
\mathl{65}{} und deren Produkt $1000$ ist.

}
{

Die Primfaktorzerlegung von
\mathl{1000}{} ist
\mavergleichskettedisp
{\vergleichskette
{1000 }
{ =} {2^3 \cdot 5^3 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Die beiden gesuchten Zahlen müssen also Teiler davon sein, also von der Form
\mathl{2^i 5^j}{} mit
\mathl{i,j \leq 3}{.} Da die Summe ungerade ist, besitzt die eine Zahl die Form
\mathdisp {8 \cdot 5^j} { . }
Dies führt auf die \mathkor {} {40} {und} {25} {.}


}





\inputaufgabepunkteloesung
{4}
{

Es sei
\mathl{n \geq 2}{.} Woran erkennt man am Kleinen Einmaleins im $n$-System \zusatzklammer {ohne die Nuller- und die Zehnerreihe} {} {,} ob $n$ eine \definitionsverweis {Primzahl}{}{} ist.

}
{

Die Zahl $n$ ist genau dann eine Primzahl, wenn im Kleinen Einmaleins zur Basis $n$ keine $0$ als Endziffer der Tabelleneinträge auftaucht. Wenn nämlich $n$ keine Primzahl ist, so gibt es eine Zerlegung
\mavergleichskettedisp
{\vergleichskette
{n }
{ =} {a \cdot b }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a,b }
{ < }{n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die Ziffern $a,b$ kommen also im kleinen Einmaleins vor. Das zugehörige Produkt $ab$ hat in dem System die Ziffernentwicklung $10$ und somit taucht als Endziffer die $0$ auf.

Wenn umgekehrt die $0$ im kleinen Einmaleins als Endziffer auftaucht, so bedeutet dies, dass es Ziffern
\mavergleichskette
{\vergleichskette
{1 }
{ \leq }{i,j }
{ < }{n }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass
\mathl{ij}{} ein Vielfaches von $n$ ist. Es ist also
\mavergleichskettedisp
{\vergleichskette
{ij }
{ =} {cn }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wenn $n$ prim wäre, so müsste nach dem Lemma von Euklid $n$ einen der Faktoren teilen, doch das geht nicht, da diese beiden kleiner als $n$ sind.


}





\inputaufgabepunkteloesung
{3}
{

Zeige, dass eine Quadratzahl
\mathl{\neq 0}{} stets eine ungerade Anzahl an Teilern besitzt.

}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{a }
{ =} {b^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{b }
{ =} { p_1^{r_1} \cdots p_k^{r_k} }
{ } { }
{ } { }
{ } { }
} {}{}{} die Primfaktorzerlegung von $b$ \zusatzklammer {mit verschiedenen Primfaktoren} {} {.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{a }
{ =} { { \left( p_1^{r_1} \cdots p_k^{r_k} \right) }^2 }
{ =} { p_1^{2r_1} \cdots p_k^{2r_k} }
{ } { }
{ } { }
} {}{}{.} Die Teiler von $a$ haben die Form
\mathdisp {p_1^{i_1} \cdots p_k^{i_k}} { }
mit
\mavergleichskettedisp
{\vergleichskette
{0 }
{ \leq} { i_j }
{ \leq} { 2r_j }
{ } { }
{ } { }
} {}{}{} für alle $j$. Somit gibt es
\mathdisp {(2r_1 +1) \cdots (2r_2+1) \cdots (2r_k+1)} { }
Teiler von $a$, und dies ist als ein Produkt von ungeraden Zahlen wieder ungerade.


}





\inputaufgabepunkteloesung
{6 (2+3+1)}
{

Ein Metallarbeiter hat zwei Metallstäbe zur Verfügung. Wenn er den kleinen siebenmal hintereinanderlegt, erhält er genau drei Meter. Wenn er den großen achtmal hintereinanderlegt, erhält er genau fünf Meter. \aufzaehlungdrei{Wie kann er allein mit diesen Stäben eine Länge von einem Meter bestimmen? }{Was ist die kleinste positive Strecke, die er mit den Stäben messen kann? }{Welche Streckenlängen kann er mit seinen beiden Metallstäben messen? }

}
{

\aufzaehlungdrei{Wenn er den langen Stab $16$-mal hintereinander hinlegt, erreicht er $10$ Meter. Wenn er von dort aus den kleinen Stab rückwärts $21$-mal hinlegt, erhält er $9$ Meter in die andere Richtung und damit insgesamt einen Meter. }{Die beiden Stäbe haben die Länge \mathkor {} {{ \frac{ 3 }{ 7 } }} {bzw.} {{ \frac{ 5 }{ 8 } }} {.} Da er die Stäbe nur hintereinander bzw. nebeneinander hinlegen kann, wobei jeweils zwei Endpunkte übereinstimmen müssen, ist die Gesamtheit der erzielbaren Längen gleich
\mathdisp {m { \frac{ 3 }{ 7 } } +n { \frac{ 5 }{ 8 } } \text{ mit } m, n \in \Z} { . }
Wir arbeiten mit dem Hauptnenner $56$ und schreiben dies als
\mathdisp {m { \frac{ 24 }{ 56 } } +n { \frac{ 35 }{ 56 } } = { \left( 24 m +35 n \right) } { \frac{ 1 }{ 56 } } \text{ mit } m, n \in \Z} { . }
Von daher ist klar, dass er nur ganzzahlige Vielfache von ${ \frac{ 1 }{ 56 } }$ legen kann. Da \mathkor {} {24 =3\cdot 8} {und} {35=5 \cdot 7} {} teilerfremd sind, gibt es nach dem Lemma von Bezout ganze Zahlen
\mathl{m,n}{} mit
\mavergleichskettedisp
{\vergleichskette
{ 24 m +35 n }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Er kann also in der Tat die Strecke
\mathl{{ \frac{ 1 }{ 56 } }}{} hinlegen. }{Da er den Prozess, mit dem er ${ \frac{ 1 }{ 56 } }$ hinlegt, beliebig oft und in beide Richtungen ausführen kann, kann er jedes ganzzahlige Vielfache von ${ \frac{ 1 }{ 56 } }$ abmessen. }


}





\inputaufgabepunkteloesung
{2}
{

Bestimme, welche der beiden rationalen Zahlen \mathkor {} {p} {und} {q} {} größer ist.
\mathdisp {p= { \frac{ 573 }{ -1234 } } \text{ und } q = { \frac{ -2007 }{ 4322 } }} { . }

}
{

Multiplikation liefert
\mathdisp {573 \cdot 4322 =2476506 \text{ und } 1234 \cdot 2007 = 2476638} { . }
Daher ist
\mavergleichskettedisp
{\vergleichskette
{ \frac{573}{1234} }
{ \leq} { \frac{2007}{4322} }
{ } { }
{ } { }
{ } { }
} {}{}{} und damit ist
\mavergleichskettedisp
{\vergleichskette
{ p }
{ =} { \frac{573}{-1234} }
{ =} { \frac{-573}{1234} }
{ \geq} { \frac{-2007}{4322} }
{ =} { q }
} {}{}{.}


}





\inputaufgabepunkteloesung
{3}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{.} Zeige, ausgehend von den Axiomen für einen angeordneten Körper, dass
\mavergleichskette
{\vergleichskette
{1 }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt.

}
{

Es gibt nur die drei sich ausschließenden Möglichkeiten
\mathdisp {1>0 \text{ oder } 1 = 0 \text{ oder } 1 < 0} { . }
Aufgrund der Körperaxiome ist
\mavergleichskette
{\vergleichskette
{ 1 }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Wir müssen also nur noch die Möglichkeit
\mavergleichskette
{\vergleichskette
{ 1 }
{ < }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} zum Widerspruch führen. Nehmen wir
\mavergleichskette
{\vergleichskette
{ 1 }
{ < }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} an. Aufgrund der Verträglichkeit mit der Addition kann man beidseitig $-1$ addieren und erhält
\mavergleichskette
{\vergleichskette
{ 0 }
{ < }{ -1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Aufgrund der Verträglichkeit mit der Multiplikation mit positiven Elementen kann man diese Abschätzung quadrieren und erhält
\mavergleichskettedisp
{\vergleichskette
{0 }
{ <} {(-1)(-1) }
{ =} {1 }
{ } { }
{ } {}
} {}{}{,} also ist zugleich
\mavergleichskette
{\vergleichskette
{ 1 }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} ein Widerspruch.


}





\inputaufgabepunkteloesung
{2}
{

Es seien
\mathl{a \neq b}{} Basen zu einem Stellenwertsystem \zusatzklammer {$a$-er System und $b$-er System} {} {.} Es sei $z$ eine \definitionsverweis {rationale Zahl}{}{,} die im Stellenwertsystem zur Basis $a$ eine abbrechende Darstellung als Kommazahl besitzt. Gilt dies dann auch im Stellenwertsystem zur Basis $b$?

}
{

Nein. Sei
\mavergleichskettedisp
{\vergleichskette
{a }
{ =} {10 }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{b }
{ =} {3 }
{ } { }
{ } { }
{ } { }
} {}{}{} und
\mavergleichskettedisp
{\vergleichskette
{z }
{ =} { { \frac{ 1 }{ 3 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {im Zehnersystem} {} {.} Im Dreiersystem ist
\mavergleichskette
{\vergleichskette
{3 }
{ = }{10 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und somit ist
\mathl{{ \frac{ 1 }{ 3 } }}{} im Dreiersystem gleich
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ 10 } } }
{ =} { 0,1 }
{ } { }
{ } { }
{ } { }
} {}{}{,} hat also eine abbrechende Ziffernentwicklung. Dagegen ist
\mathl{{ \frac{ 1 }{ 3 } }}{} kein Dezimalbruch und hat somit im Dezimalsystem keine endliche Entwicklung.


}