Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Arbeitsblatt 5/latex
\setcounter{section}{5}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabegibtloesung
{}
{
Bestimme, welche der beiden rationalen Zahlen
\mathkor {} {p} {und} {q} {}
größer ist.
\mathdisp {p= { \frac{ 573 }{ -1234 } } \text{ und } q = { \frac{ -2007 }{ 4322 } }} { . }
}
{} {}
\inputaufgabegibtloesung
{}
{
Es stehen zwei Gläser auf einem Tisch, wobei das eine mit Rotwein und das andere mit Weißwein gefüllt ist, und zwar gleichermaßen. Nun wird ein kleineres leeres Glas \zusatzklammer {ein Fingerhut oder ein Schnapsglas} {} {} in das Rotweinglas voll eingetaucht und der Inhalt in das Weißweinglas überführt und dort gleichmäßig vermischt \zusatzklammer {insbesondere gibt es Platz für diese Hinzugabe} {} {.} Danach wird das kleinere Glas in das Weißweinglas voll eingetaucht und der Inhalt in das Rotweinglas überführt. Befindet sich zum Schluss im Rotweinglas mehr Rotwein als im Weißweinglas Weißwein?
}
{} {}
\inputaufgabegibtloesung
{}
{
Eine Bahncard $25$, mit der man ein Jahr lang $25$ Prozent des Normalpreises einspart, kostet $62$ Euro und eine Bahncard $50$, mit der man ein Jahr lang $50$ Prozent des Normalpreises einspart, kostet $255$ Euro. Für welchen Jahresgesamtnormalpreis ist keine Bahncard, die Bahncard $25$ oder die Bahncard $50$ die günstigste Option?
}
{} {}
\inputaufgabegibtloesung
{}
{
Zwei Fahrradfahrer, \mathkor {} {A} {und} {B} {,} fahren auf ihren Fahrrädern eine Straße entlang. Fahrer $A$ macht pro Minute $40$ Pedalumdrehungen, hat eine Übersetzung von Pedal zu Hinterrad von $1$ zu $6$ und Reifen mit einem Radius von $39$ Zentimetern. Fahrer $B$ braucht für eine Pedaldrehung $2$ Sekunden, hat eine Übersetzung von $1$ zu $7$ und Reifen mit einem Radius von $45$ Zentimetern.
Wer fährt schneller?
}
{} {}
\inputaufgabe
{}
{
Zeige, dass in einem
\definitionsverweis {angeordneten Körper}{}{}
die folgenden Eigenschaften gelten.
\aufzaehlungzweireihe {\itemfuenf {
\mavergleichskette
{\vergleichskette
{1
}
{ \geq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{-a
}
{ \leq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}{Es ist
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{a-b
}
{ \geq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}{Es ist
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{-a
}
{ \leq }{-b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{c
}
{ \geq }{d
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{a +c
}
{ \geq }{b+d
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
} } {\itemfuenf {Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{c
}
{ \geq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ac
}
{ \geq }{bc
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{c
}
{ \leq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ac
}
{ \leq }{bc
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ \geq }{0
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{c
}
{ \geq }{d
}
{ \geq }{0
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ac
}
{ \geq }{bd
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{b
}
{ \leq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ab
}
{ \leq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \leq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{b
}
{ \leq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ab
}
{ \geq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
} }
}
{} {}
\inputaufgabegibtloesung
{}
{
Auf dem kürzlich entdeckten Planeten Trigeno lebt eine rechenbegabte Spezies. Sie verwenden wie wir die rationalen Zahlen mit \anfuehrung{unserer}{} Addition und Multiplikation. Sie verwenden ferner eine Art \anfuehrung{Ordnung}{} auf den rationalen Zahlen, die sie mit $\succeq$ bezeichnen. Diese trigenometrische Ordnung stimmt mit unserer Ordnung überein, wenn beide Zahlen $\neq 0$ sind. Dagegen gilt bei ihnen
\mavergleichskettedisp
{\vergleichskette
{0
}
{ \succeq} {x
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für jede rationale Zahl $x$. Die renommierte Ethnomathematikerin Dr. Eisenbeis vermutet, dass dies damit in Zusammenhang steht, dass sie die $0$ als heilig verehren.
Zeige, dass $\succeq$ die folgenden Eigenschaften erfüllt.
\aufzaehlungvier{Für je zwei Elemente
\mavergleichskette
{\vergleichskette
{a,b
}
{ \in }{\Q
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt entweder
\mavergleichskette
{\vergleichskette
{a
}
{ \succ }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
oder
\mavergleichskette
{\vergleichskette
{a
}
{ = }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
oder
\mavergleichskette
{\vergleichskette
{b
}
{ \succ }{a
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \succeq }{b
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{b
}
{ \succeq }{c
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{a
}
{ \succeq }{c
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\zusatzklammer {für beliebige
\mavergleichskettek
{\vergleichskettek
{ a , b , c
}
{ \in }{ \Q
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {.}
}{Aus
\mavergleichskette
{\vergleichskette
{ a
}
{ \succeq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ b
}
{ \succeq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ a + b
}
{ \succeq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{ a
}
{ \succeq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ b
}
{ \succeq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{ a b
}
{ \succeq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
Welche Eigenschaft eines angeordneten Körpers erfüllt
\mathl{(\Q, \succeq)}{} nicht?
}
{} {}
\inputaufgabe
{}
{
Zeige, dass in einem
\definitionsverweis {angeordneten Körper}{}{}
die folgenden Eigenschaften gelten.
\aufzaehlungdrei{Es ist
\mavergleichskette
{\vergleichskette
{a^2
}
{ \geq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{b
}
{ \geq }{0
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{a^n
}
{ \geq }{b^n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Aus
\mavergleichskette
{\vergleichskette
{a
}
{ \geq }{1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
folgt
\mavergleichskette
{\vergleichskette
{a^n
}
{ \geq }{a^m
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für ganze Zahlen
\mavergleichskette
{\vergleichskette
{n
}
{ \geq }{m
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mavergleichskette
{\vergleichskette
{ x
}
{ > }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass auch das inverse Element $x^{-1}$ positiv ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mavergleichskette
{\vergleichskette
{ x
}
{ \geq }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass für das inverse Element
\mavergleichskette
{\vergleichskette
{ x^{-1}
}
{ \leq }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mavergleichskette
{\vergleichskette
{ x
}
{ > }{ y
}
{ > }{ 0
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass für die
\definitionsverweis {inversen Elemente}{}{}
\mavergleichskette
{\vergleichskette
{ x^{-1}
}
{ < }{ y^{-1}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und seien $x, y$ positive Elemente. Zeige, dass
\mavergleichskette
{\vergleichskette
{x
}
{ \geq }{y
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
zu
\mavergleichskette
{\vergleichskette
{ { \frac{ x }{ y } }
}
{ \geq }{1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
äquivalent ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $K$ ein
\definitionsverweis {angeordneter Körper}{}{}
und
\mathbed {b \in K} {}
{b> 1} {}
{} {} {} {.}
Zeige, dass es dann Elemente
\mavergleichskette
{\vergleichskette
{c,d
}
{ > }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{b
}
{ = }{cd
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gibt.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{.} Zeige, dass für
\mavergleichskette
{\vergleichskette
{x
}
{ \geq }{3
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ x^2 +(x+1)^2 }
{ \geq} { (x+2)^2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabe
{}
{
Es seien
\mavergleichskette
{\vergleichskette
{ x
}
{ < }{ y
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
reelle Zahlen. Zeige, dass für das
\definitionsverweis {arithmetische Mittel}{}{}
${ \frac{ x+y }{ 2 } }$ die Beziehung
\mavergleichskettedisp
{\vergleichskette
{x
}
{ <} { { \frac{ x+y }{ 2 } }
}
{ <} {y
}
{ } {}
{ } {}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabegibtloesung
{}
{
Man entwerfe ein Computer-Programm
\zusatzklammer {Pseudocode} {} {,}
das das
\definitionsverweis {arithmetische Mittel}{}{}
aus zwei vorgegebenen nichtnegativen rationalen Zahlen berechnet.
\auflistungfuenf{Der Computer besitzt beliebig viele Speicher, die natürliche Zahlen enthalten können.
}{Er kann die Summe von zwei Speicherinhalten ausrechnen und in einen weiteren Speicher schreiben.
}{Er kann das Produkt von zwei Speicherinhalten ausrechnen und in einen weiteren Speicher schreiben.
}{Er kann Speicherinhalte ausdrucken und vorgegebene Texte ausdrucken.
}{Es gibt einen Haltebefehl.
}
Die Anfangskonfiguration sei
\mathdisp {(a,b,c,d,0,0,0, \ldots )} { }
mit
\mavergleichskette
{\vergleichskette
{b,d
}
{ \neq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Dabei sind
\mathkor {} {a/b} {und} {c/d} {}
die rationalen Zahlen, von denen das arithmetische Mittel berechnet werden soll. Das Ergebnis soll ausgedruckt werden
\zusatzklammer {in der Form Zähler Nenner} {} {}
und anschließend soll das Programm anhalten.
}
{} {}
\inputaufgabe
{}
{
Man untersuche die \definitionsverweis {Verknüpfung}{}{} \maabbeledisp {} {\R_{\geq 0} \times \R_{\geq 0} } {\R_{\geq 0} } {(x,y)} { \operatorname{max} \, (x,y) } {,} auf Assoziativität, Kommutativität, die Existenz von einem neutralen Element und die Existenz von inversen Elementen.
}
{} {}
\inputaufgabe
{}
{
Ein Bakterium möchte entlang des Äquators die Erde umrunden. Es ist ziemlich klein und schafft am Tag genau $2$ Millimeter. Wie viele Tage braucht es für eine Erdumrundung?
}
{} {}
\inputaufgabe
{}
{
Wie viele Billionstel braucht man, um ein Milliardstel zu erreichen?
}
{} {}
\inputaufgabegibtloesung
{}
{
Im Wald lebt ein Riese, der $8$ Meter und $37$ cm groß ist, sowie eine Kolonie von Zwergen, die eine Schulterhöhe von $3$ cm haben und mit dem Kopf insgesamt $4$ cm groß sind. Hals und Kopf des Riesen sind $1,23$ Meter hoch. Auf der Schulter des Riesen steht ein Zwerg. Wie viele Zwerge müssen aufeinander \zusatzklammer {auf den Schultern} {} {} stehen, damit der oberste Zwerg mit dem Zwerg auf dem Riesen zumindest gleichauf ist?
}
{} {}
\inputaufgabegibtloesung
{}
{
Zeige, dass in $\R$ die folgenden Eigenschaften gelten.
\aufzaehlungzwei {Zu jedem
\mavergleichskette
{\vergleichskette
{ x
}
{ > }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gibt es eine natürliche Zahl $n$ mit
\mavergleichskette
{\vergleichskette
{ \frac{1}{n}
}
{ \leq }{ x
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
} {Zu zwei reellen Zahlen
\mavergleichskettedisp
{\vergleichskette
{ x
}
{ <} { y
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gibt es eine rationale Zahl
\mathl{n/k}{}
\zusatzklammer {mit $n \in \Z,\, k \in \N_+$} {} {}
mit
\mavergleichskettedisp
{\vergleichskette
{x
}
{ <} { { \frac{ n }{ k } }
}
{ <} {y
}
{ } {
}
{ } {
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Berechne die
\definitionsverweis {Gaußklammer}{}{}
\mathdisp {\left \lfloor { \frac{ 513 }{ 21 } } \right \rfloor} { . }
}
{} {}
\inputaufgabe
{}
{
Beweise die folgenden Eigenschaften für die
\definitionsverweis {Betragsfunktion}{}{}
\maabbeledisp {} {\R} {\R
} {x} {\betrag { x }
} {,}\zusatzklammer {dabei seien $x,y$ beliebige reelle Zahlen} {} {.}\aufzaehlungacht{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x }
}
{ \geq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x }
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{x
}
{ = }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x }
}
{ = }{\betrag { y }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{x
}
{ = }{y
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
oder
\mavergleichskette
{\vergleichskette
{x
}
{ = }{-y
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { y-x }
}
{ = }{ \betrag { x-y }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { xy }
}
{ = }{ \betrag { x } \betrag { y }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Für
\mavergleichskette
{\vergleichskette
{x
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist
\mavergleichskette
{\vergleichskette
{ \betrag { x^{-1} }
}
{ = }{ \betrag { x }^{-1}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x+y }
}
{ \leq }{ \betrag { x } + \betrag { y }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\zusatzklammer {\stichwort {Dreiecksungleichung für den Betrag} {}} {} {.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x+y }
}
{ \geq }{ \betrag { x } - \betrag { y }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Es seien $x_1 , \ldots , x_n$ reelle Zahlen. Zeige durch
\definitionsverweis {Induktion}{}{}
die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { \sum_{i=1}^n x_i }
}
{ \leq} { \sum_{i = 1}^n \betrag { x_i }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
Die Idee zu den folgenden Aufgaben stammt von http://jwilson.coe.uga.edu/emt725/Challenge/Challenge.html, siehe auch http://www.vier-zahlen.bplaced.net/raetsel.php .
\inputaufgabe
{}
{
Wir betrachten die Abbildung
\maabbdisp {\Psi} {\N^4} { \N^4
} {,}
die einem Vierertupel
\mathl{(a,b,c,d)}{} das Vierertupel
\mathdisp {( \betrag { b-a } , \betrag { c-b } , \betrag { d-c } , \betrag { a-d } )} { }
zuordnet. Es bezeichne
\mathl{\Psi^n}{} die $n$-fache
\definitionsverweis {Hintereinanderschaltung}{}{}
von $\Psi$.
\aufzaehlungdrei{Berechne
\mathdisp {\Psi (6,5,2,8), \, \Psi^2 (6,5,2,8), \, \Psi^3 (6,5,2,8), \, \Psi^4 (6,5,2,8)\, ...} { , }
bis das Ergebnis das Nulltupel
\mathl{(0,0,0,0)}{} ist.
}{Berechne
\mathdisp {\Psi (1,10,100,1000), \, \Psi^2 (1,10,100,1000), \, \Psi^3 (1,10,100,1000), \, \Psi^4 (1,10,100,1000) \, ...} { , }
bis das Ergebnis das Nulltupel
\mathl{(0,0,0,0)}{} ist.
}{Zeige
\mavergleichskette
{\vergleichskette
{ \Psi^4 (0,0,n,0)
}
{ = }{ (0,0,0,0)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für jedes
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabegibtloesung
{}
{
Wir betrachten die Abbildung
\maabbdisp {\Psi} {\N^4} { \N^4
} {,}
die einem Vierertupel
\mathl{(a,b,c,d)}{} das Vierertupel
\mathdisp {( \betrag { b-a } , \betrag { c-b } , \betrag { d-c } , \betrag { a-d } )} { }
zuordnet. Bestimme, ob $\Psi$
\definitionsverweis {injektiv}{}{}
und ob $\Psi$
\definitionsverweis {surjektiv}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Wir betrachten die Abbildung
\maabbdisp {\Psi} {\N^4} { \N^4
} {,}
die einem Vierertupel
\mathl{(a,b,c,d)}{} das Vierertupel
\mathdisp {( \betrag { b-a } , \betrag { c-b } , \betrag { d-c } , \betrag { a-d } )} { }
zuordnet. Zeige, dass sich bei jedem Starttupel
\mathl{(a,b,c,d)}{} nach endlich vielen Iterationen dieser Abbildung stets das Nulltupel ergibt.
}
{} {}
\inputaufgabe
{}
{
Wir betrachten die Abbildung
\maabbdisp {\Psi} {\N^4} { \N^4
} {,}
die einem Vierertupel
\mathl{(a,b,c,d)}{} das Vierertupel
\mathdisp {( \betrag { b-a } , \betrag { c-b } , \betrag { d-c } , \betrag { a-d } )} { }
zuordnet. Man gebe ein Beispiel für ein Vierertupel
\mathl{(a,b,c,d)}{} mit der Eigenschaft an, dass sämliche Iterationen
\mathl{\Psi^n (a,b,c,d)}{} für
\mavergleichskette
{\vergleichskette
{ n
}
{ \leq }{ 25
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
nicht das Nulltupel liefern. Überprüfe das Ergebnis auf http://www.vier-zahlen.bplaced.net/raetsel.php .
}
{} {}
Wir werden später auch die Frage behandeln, wie es mit reellen Vierertupeln aussieht, siehe insbesondere Aufgabe 28.10.
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {angeordneter Körper}{}{}
und
\mavergleichskette
{\vergleichskette
{n
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige die folgenden Aussagen.
\aufzaehlungdrei{Die Abbildung
\maabbeledisp {} {K_{\geq 0}} {K
} {x} {x^n
} {,}
ist
\definitionsverweis {streng wachsend}{}{.}
}{Die Abbildung
\maabbeledisp {} {K_{\leq 0}} {K
} {x} {x^n
} {,}
ist bei $n$ ungerade
\definitionsverweis {streng wachsend}{}{.}
}{Die Abbildung
\maabbeledisp {} {K_{\leq 0}} {K
} {x} {x^n
} {,}
ist bei $n$ gerade
\definitionsverweis {streng fallend}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Es seien
\maabbdisp {f_1 , \ldots , f_n} {\R} {\R
} {}
Funktionen, die wachsend oder fallend seien, und sei
\mathl{f=f_n \circ \cdots \circ f_1}{} ihre
\definitionsverweis {Hintereinanderschaltung}{}{.}
Es sei $k$ die Anzahl der fallenden Funktionen unter den $f_i$. Zeige, dass bei $k$ gerade $f$
\definitionsverweis {wachsend}{}{} und bei $k$ ungerade $f$
\definitionsverweis {fallend}{}{} ist.
}
{} {}
Bei den Rechenaufgaben zu den komplexen Zahlen muss das Ergebnis immer in der Form $a+b { \mathrm i}$ mit reellen Zahlen $a,b$ angegeben werden, wobei diese so einfach wie möglich sein sollen.
\inputaufgabe
{}
{
Berechne die folgenden Ausdrücke innerhalb der \definitionsverweis {komplexen Zahlen}{}{.} \aufzaehlungsechs{$(5+4 { \mathrm i})(3-2 { \mathrm i})$. }{$(2+3 { \mathrm i})(2-4 { \mathrm i} ) +3(1- { \mathrm i} )$. }{$(2 { \mathrm i}+3)^2$. }{${ \mathrm i}^{1011}$. }{$(-2+5 { \mathrm i})^{-1}$. }{$\frac{4-3 { \mathrm i}}{2+ { \mathrm i} }$. }
}
{} {}
\inputaufgabegibtloesung
{}
{
Zeige, dass die \definitionsverweis {komplexen Zahlen}{}{} einen \definitionsverweis {Körper}{}{} bilden.
}
{} {}
\inputaufgabe
{}
{
Zeige, dass
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ \R^2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit der
\definitionsverweis {komponentenweisen}{}{}
Addition und der komponentenweisen Multiplikation kein
\definitionsverweis {Körper}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Beweise die folgenden Aussagen zu
\definitionsverweis {Real}{}{-}
und
\definitionsverweis {Imaginärteil}{}{}
von
\definitionsverweis {komplexen Zahlen}{}{.}
\aufzaehlungfuenf{Es ist
\mavergleichskette
{\vergleichskette
{ z
}
{ = }{
\operatorname{Re} \, { \left( z \right) } + \operatorname{Im} \, { \left( z \right) } { \mathrm i}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{
\operatorname{Re} \, { \left( z+w \right) }
}
{ = }{
\operatorname{Re} \, { \left( z \right) } +
\operatorname{Re} \, { \left( w \right) }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \operatorname{Im} \, { \left( z+w \right) }
}
{ = }{ \operatorname{Im} \, { \left( z \right) } + \operatorname{Im} \, { \left( w \right) }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Für
\mavergleichskette
{\vergleichskette
{r
}
{ \in }{\R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist
\mathdisp {\operatorname{Re} \, { \left( rz \right) } =r
\operatorname{Re} \, { \left( z \right) } \text{ und } \operatorname{Im} \, { \left( rz \right) } =r \operatorname{Im} \, { \left( z \right) }} { . }
}{Es ist
\mavergleichskette
{\vergleichskette
{ z
}
{ = }{
\operatorname{Re} \, { \left( z \right) }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{z
}
{ \in }{\R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist, und dies ist genau dann der Fall, wenn
\mavergleichskette
{\vergleichskette
{ \operatorname{Im} \, { \left( z \right) }
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
}
{} {}
\inputaufgabegibtloesung
{}
{
Zeige, dass für eine
\definitionsverweis {komplexe Zahl}{}{}
$z$ die folgenden Beziehungen gelten.
\aufzaehlungdrei{Es ist
\mavergleichskette
{\vergleichskette
{ \overline{ z }
}
{ = }{
\operatorname{Re} \, { \left( z \right) } - { \mathrm i} \operatorname{Im} \, { \left( z \right) }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{
\operatorname{Re} \, { \left( z \right) }
}
{ = }{ \frac{z+ \overline{ z } }{2}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \operatorname{Im} \, { \left( z \right) }
}
{ = }{ \frac{z - \overline{ z } }{2 { \mathrm i} }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
}
{} {}
\inputaufgabe
{}
{
Zeige die folgenden Regeln für den
\definitionsverweis {Betrag}{}{}
von
\definitionsverweis {komplexen Zahlen}{}{.}
\aufzaehlungsieben{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { z }
}
{ = }{ \sqrt{ z \ \overline{ z } }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Für reelles $z$ stimmen reeller und komplexer Betrag überein.
}{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { z }
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{ z
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}{
\mavergleichskettedisp
{\vergleichskette
{ \betrag { z }
}
{ =} { \betrag { \overline{ z } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}{
\mavergleichskettedisp
{\vergleichskette
{ \betrag { zw }
}
{ =} { \betrag { z } \betrag { w }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}{Für
\mavergleichskette
{\vergleichskette
{ z
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist
\mavergleichskette
{\vergleichskette
{ \betrag { 1/z }
}
{ = }{ 1/ \betrag { z }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{
\mavergleichskettedisp
{\vergleichskette
{ \betrag {
\operatorname{Re} \, { \left( z \right) } }, \betrag { \operatorname{Im} \, { \left( z \right) } }
}
{ \leq} { \betrag { z }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{2}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mavergleichskette
{\vergleichskette
{ x
}
{ < }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass auch das inverse Element $x^{-1}$ negativ ist.
}
{} {}
\inputaufgabe
{2}
{
Zeige, dass eine \definitionsverweis {streng wachsende Funktion}{}{} \maabbdisp {f} {\R} {\R } {} \definitionsverweis {injektiv}{}{} ist.
}
{} {}
\inputaufgabe
{4}
{
Wir betrachten die Abbildung
\maabbdisp {\Psi} {\Q_{\geq 0}^4} { \Q_{\geq 0}^4
} {,}
die einem Vierertupel aus nichtnegativen rationalen Zahlen
\mathl{(a,b,c,d)}{} das Vierertupel
\mathdisp {( \betrag { b-a } , \betrag { c-b } , \betrag { d-c } , \betrag { a-d } )} { }
zuordnet. Zeige, dass sich nach endlich vielen Iterationen dieser Abbildung stets das Nulltupel ergibt.
}
{} {Tipp: Verwende
Aufgabe 5.26.}
\inputaufgabe
{3}
{
Berechne die
\definitionsverweis {komplexen Zahlen}{}{}
\mathdisp {(1+ { \mathrm i})^n} { }
für
\mavergleichskette
{\vergleichskette
{ n
}
{ = }{ 1,2,3,4,5
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{3}
{
Zeige, dass für die
\definitionsverweis {komplexe Konjugation}{}{}
die folgenden Rechenregeln gelten.
\aufzaehlungsechs{Es ist
\mavergleichskette
{\vergleichskette
{ \overline{ z+w }
}
{ = }{ \overline{ z } + \overline{ w }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \overline{ -z }
}
{ = }{ - \overline{ z }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \overline{ z \cdot w }
}
{ = }{ \overline{ z } \cdot \overline{ w }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Für
\mavergleichskette
{\vergleichskette
{z
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist
\mavergleichskette
{\vergleichskette
{ \overline{ 1/z }
}
{ = }{ 1/\overline{ z }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \overline{ \overline{ z } }
}
{ = }{ z
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}{Es ist
\mavergleichskette
{\vergleichskette
{ \overline{ z }
}
{ = }{ z
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann, wenn
\mavergleichskette
{\vergleichskette
{z
}
{ \in }{\R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
}
{} {}
\inputaufgabe
{5}
{
Berechne die Quadratwurzeln, die vierten Wurzeln und die achten Wurzeln von ${ \mathrm i}$.
}
{} {}
\inputaufgabe
{3}
{
Man finde alle drei komplexen Zahlen $z$, die die Bedingung
\mathdisp {z^3=1} { }
erfüllen.
}
{} {}